2. Tentukan akar-akar dari persamaan
kuadrat x² + 2x – 24 = 0
3. Tentukan koordinat titik balik dari grafik
fungsi kuadrat y = x² – 4x – 12…
Tolong bantuin kk…
1. Tentukan hasil dari 2° +2¹+2²+2³ = ..
Jawaban:
1. 15
2. x = 4 atau -6
3. (2,-16)
Penjelasan dengan langkah-langkah:
1. Tentukan hasil dari 2° +2¹+2²+2³ = …
2⁰ + 2¹ + 2² + 2³
= 1 + 2 + 4 + 8
= 15
2. Tentukan akar-akar dapi persamaan x² + 2x – 24 = 0
x² + 2x – 24 = 0
(x – 4)(x + 6) = 0
x – 4 = 0 x + 6 = 0
x = 4 x = -6
x = 4 atau -6
3. Tentukan koordinat titik balik dari grafik
fungsi kuadrat y = x² – 4x – 12…
Koordinat titik balik = (sumbu simetri,nilai maksimum/munimum)
y = x² – 4x – 12
a = 1
b = -4
c = -12
Sumbu Simetri
-b/2a
= -(-4)/2(1)
= 4/2
= 2
Nilai minimum
-D/ 4a
= (b² – 4ac)/-4a
= ((-4)² – 4(1)(-12))/-4(1)
= ( 16 + 48 )/-4
= 64/-4
= -16
maka koordinat titik balik fungsi kuadrat y = x² – 4x – 12 adalah
(2,-16)