2 sin² x – 3 sin x + 1 = 0

Posted on

2 sin² x – 3 sin x + 1 = 0

sin²x−3sinx+1=0

⇒2sin²x−2sinxsinx+1=0

⇒2sinx(sinx−1)(sinx−1)=0

(sinx−1)(2sinx−1)=0

when

sinx−1=0

sinx=1=sin(π2)

⇒x=nπ+(−1)nπ2 where n∈Z

when

2sinx−1=0

sinx=12=sin(π6)

⇒x=nπ+(−1)nπ6 where n∈Z