[+50]

Posted on

materi : integral tak tentu
kelas : 4
bab : lupa

selesaikan integral dibawah ↓
∫(8 {x}^{3}  -  {x}^{2}  + 10)dx \


– peraturan :
gunakan sifat seperti diquiz integral sebelumnya​

[+50]

Rumus:

 displaystyle int ({ax}^{n} )dx = frac{a}{n + 1} {x}^{n + 1} + c

Jawab:

 displaystyle int (8 {x}^{3} - {x}^{2} + 10)dx

 displaystylefrac{8}{3 + 1} x^{3 + 1} - frac{1}{2 + 1} {x}^{2 + 1} + 10x

 displaystylefrac{8}{4} x^{4} - frac{1}{3} {x}^{3} + 10x

 displaystyle2 x^{4} - frac{1}{3} {x}^{3} + 10x

 displaystyle2 x^{4} - frac{1}{3} {x}^{3} + 10x + C

⠀ ⠀ ⠀

Detail jawaban

kelas: 11

mapel: matematika

materi: Integral Tak
Tentu Fungsi
Aljabar

kode kategorisasi: 11.2.10

~ Integral tak tentu

_______________

∫(8x³ – x² + 10)dx

= 8/3+1 x^3+1 – 1/2+1 x^2+1 + 10x

= 8/4x⁴ – 1/3x^3 + 10x

= 2x⁴ – ⅓x³ + 10x

= 2x⁴ – 1/3x³ + 10x + C