[+50](3/10)

Posted on

pedjoang quiz pada follow, ni jwb quiznya bang

luas daerah yang dibatasi oleh kurva y = 4x – x², x = 1 dan x = 3, sumbu x​

[+50](3/10)

Penjelasan dengan langkah-langkah:

Menentukan luas daerah diatas sumbu-x yg diarsir, bisa pakai rumus:

L = int^{b}_af(x) : dx \

 :

l = int^{3}_1(4x - {x}^{2} ) : dx \

l = int^{3}_14x : dx - int^{3}_1 {x}^{2} : dx \

l = 4 times int^{3}_1x : dx : - int^{3}_1 {x}^{2} dx \

l = 4 times frac{ {x}^{2} }{2} |^{3} _1 : - : frac{ {x}^{3} }{3}|^{3} _1

l = 4 times ( frac{ {3}^{2} }{2} - frac{ {1}^{2} }{2} ) - (frac{3 {}^{3} }{3} - frac{1 ^{3} }{3} )

l = 4 times frac{8}{2} - frac{26}{3}

l = 16 - frac{26}{2}

l = frac{22}{3}

l = 7 frac{1}{3}

Batas batas integral :

  • x = 1 dan
  • x = 3

 \

L = ∫ 4x – x² dx [ 1 3 ]

L = ∫ 4x dx – ∫ x² dx

L = 4x^1+1/1+1 – x^2+1/2+1

L = 4x²/2 – x³/3

L = 2x² – x³/3 [ 1 3 ]

L = ( 2(3²) – 3³/3 ) – ( 2(1²) – ⅓ )

L = ( 2.9 – 9 ) – ( 2 – ⅓ )

L = 9 – 5/3

L = 22/3 SL