4y = 12x – 16
6x + 5y = 18
9x – 4y – 12 = 0
7y – 6x + 15 = 0
Tentukan persamaan garis yang melalui titik (–18 , 7) dan tegak lurus terhadap garis berikut!
Jawab:
Penjelasan dengan langkah-langkah:
1.
garis 1.
4y = 12x – 16
m₁ = 12/4 = 3
syarat 2 garis tegak lurus ;
m₁ x m₂ = -1
3 x m₂ = -1
m₂ = -1/3
garis 2 melalui titik ( -18 , 7 )
garis 2 ;
y – y₁ = m ( x – x₁ )
y – 7 = -1/3 ( x + 18 )
3y – 21 = -1 ( x – 18 ) ——-> dikalikan 3
3y – 21 = -x + 18
3y = -x + 18 + 21
3y = -x + 39
2.
garis 1 ;
6x + 5y = 18
m₁ = -6/5
syarat 2 garis tegak lurus.
m₁ x m₂ = -1
-6/5 x m₂ = -1
m₂ = 5/6
garis 2 melalui titik ( -18 , 7 ) ;
y – 7 = 5/6 ( x + 18 )
6y – 42 = 5 ( x + 18 ) ———> dikalikan 6
6y – 42 = 5x + 90
6y – 5x = 90 + 42
6y – 5x = 132
5x – 6y = -132
3.
garis 1.
9x – 4y – 12 = 0
m₁ = -9/-4
m₁ = 9/4
syarat 2 garis tegak lurus ;
m₁ x m₂ = -1
9/4 x m₂ = -1
m₂ = -4/9
garis 2 melalui titik ( -18 , 7 )
y – 7 = -4/9 ( x + 18 )
9y – 63 = -4 ( x + 18 ) ———> dikalikan 9
9y – 63 = -4x – 72
4x + 9y – 63 + 72
4x + 9y + 9 = 0
4.
garis 1 .
7y – 6x + 15 = 0
m₁ = -(-6)/7
m₁ = 6/7
syarat 2 garis tegak lurus ;
m₁ x m₂ = -1
6/7 x m₂ = -1
m₂ = -7/6
garis 2 melalui titik ( -18 , 7 )
y – 7 = -7/6 ( x + 18 )
6y – 42 = -7 ( x + 18 ) ——–> dikalikan 6
6y – 42 = -7x – 126
6y + 7x – 42 + 126 = 0
6y + 7x + 84 = 0
semoga bisa membantu