Tentukan jumlah 5 suku pertama pada deret geometri 3+3/2=3/4+……….
Diketahui :
a = U₁
b = U₂ – U₁
r = U₂/U₁
Un = a + (n – 1)b.
Sn = n/2.(2a + (n – 1)b)
Ditanya :
S₅ = ???
Dijawab :
⇔ n = 5
⇔ a = U₁
= 3
⇔ b = 3/2 – 3
⇔ b = 3/2 – 6/2
⇔ b = -3/2
⇔ r = U₂/U₁
⇔ r = (3/2)/3
⇔ r = 3/(2.3)
⇔ r = 3/6
⇔ r = 1/2
deret aritmatika
Sn = n/2.(2a + (n – 1)b)
S₅ = (5/2).(2.3 + (5-1).(-3/2)
= (5/2).(6+ (4.-3/2))
= (5/2).(6+(-12/2))
= (5/2).(6-6)
= (5/2).(0)
= 0
deret geometri
S₅ = (3*(1-(1/2)^(5))/(1-(1/2))
S₅ = (3*(-(1/2)^(5))/(1/2)
S₅ = (3*(-(1/32))/(1/2)
S₅ = (3*2)(-(1/32)+1)/1
S₅ = (6)((32/32)-(1/32))
S₅ = (6)(31/32)
S₅ = (186/32)
S₅ = (93/16)
Jadi jumlah 5 suku pertama pada deret geometri tersebut adalah 93/16