Tentukan himpunan penyelesaian dari persamaan berikut!

Posted on

  huge{} {2}^{ sqrt{100 {x}^{2}  }  :  +  : 2y}  = 32 \   huge{} {5}^{ sqrt{ sqrt{256 {x}^{4} }  }  : -  : 2y }  = 125

Tentukan himpunan penyelesaian dari persamaan berikut!

Jawaban:

{4/7, -5/14}

Penjelasan dengan langkahlangkah:

 {2}^{ sqrt{100 {x}^{2} } + 2y } = 32 \ {2}^{10x + 2y} = {2}^{5} \ 10x + 2y = 5

Lanjut persamaan kedua:

 {5}^{ sqrt{ sqrt{256 {x}^{4} } } - 2y} = 125 \ {5}^{4x - 2y} = {5}^{3} \ 4x - 2y = 3

10x+2y=5

4x-2y= 3

————- +

14x= 8

x= 8/14= 4/7

10(4/7)+2y=5

40/7+2y=5

2y= 5-40/7

2y= 35/7-40/7

2y= -5/7

y= -5/14

Eksponen

 rm x to dfrac {4}{7}

 rm y to -dfrac {5}{14}

_____________________________

Persamaan (i)

 rm 2^{sqrt {100x²} + 2y} = 32

 rm 2^{sqrt {100x²} + 2y} = 2⁵

 rm sqrt {100x²} + 2y = 5

 rm sqrt {10²} sqrt {x²} + 2y = 5

 rm 10x + 2y = 5

Persamaan (ii)

 rm 5^{sqrt {sqrt {256x⁴}} - 2y} = 125

 rm 5^{sqrt {sqrt {256x⁴}} - 2y} = 5³

 rm sqrt {sqrt {256x⁴}} - 2y = 3

 rm 256^{frac {1}{4}} ~x⁴{frac {1}{4}} - 2y = 3

 rm 4⁴^{frac {1}{4}} ~x - 2y = 3

 rm 4x - 2y = 3

 rm 2y = 4x - 3

Substitusikan

 rm 10x + 2y = 5

 rm 10x + (4x - 3) = 5

 rm 14x = 8

 rm x = dfrac {8}{14}

 rm x = dfrac {4}{7}

Substitusikan

 rm 2y = 4x - 3

 rm 2y = 4 ~.~dfrac {4}{7} - 3

 rm 2y = -dfrac {5}{7}

 rm y = -dfrac {5}{14}