Tentukan turunan dari y=cos(cos(cos 2x))
subtitusi :
2x = a , cos a = b , cos b = c
maka y jadi :
y = cos c
dy = d(cos c)
= -sin c . dc <= c = cos b
= -sin(cos b) . d(cos b)
= sin(cos b).sin b . db <= b = cos a
= sin(cos(cos a)).sin(cos a).d(cos a)
= – sin(cos(cos a)).sin(cos a).sin a . da <= a = 2x
= – sin(cos(cos (2x))).sin(cos (2x)).sin(2x) . d(2x)
dy/dx = -2.sin(cos(cos (2x))).sin(cos (2x)).sin(2x) <= sin 2x bisa diubah
= -4.sin(cos(cos (2x))).sin(cos (2x)).sin x.cos x
Gunakan aturan rantai.
Misal, a = 2x
maka, da/dx = 2
Misal, b = cos(a)
maka da/db = -sin(a)
Misal, c = cos(b)
maka, dc/db = -sin(b)
Misal, y = cos(c)
maka, dy/dc = -sin(c)
Maka, dy/dx = dy/dc . dc/db . da/db . da/dx
= (-sin(c))(-sin(b))(-sin(a))(2)
= -2sin(c).sin(b).sin(a)
= -2.sin(cos(b)).sin(b).sin(a)
= -2.sin(cos(cos(a))).sin(cos(a)).sin(a)
= -2.sin(cos(cos(2x))).sin(cos(2x)).sin(2x)