a. 6x + 3y = 1 dan 8x – 5y + 3 = 0
b. 8x – 5y – 9 = 0 dan 3x + 5y – 31 = 0
Dengan metode subsitusi tentukan himpunan penyelesaian fungsi berikut ini:
a.
6x + 3y = 1 …(1)
8x – 5y = -3 …(2)
Dari persamaan (1), diperoleh
6x + 3y = 1
3y = 1 – 6x
y = 1/3 – 2x
Substitusi y = 1/3 – 2x ke persamaan (2)
8x – 5(1/3 – 2x) = -3
8x – 5/3 + 10x = -3
18x = -3 + 5/3
18x = -9/3 + 5/3
18x = -4/3
x = -4/3 × 1/18
x = -2/3 × 1/9
x = -2/27
Substitusi x = -2/27 ke y = 1/3 – 2x
y = 1/3 – 2(-2/27)
y = 9/27 + 4/27
y = 13/27
HP = {(x, y)} = {(-2/27, 13/27)}
b.
8x – 5y = 9 …(1)
3x + 5y = 31 …(2)
Dari persamaan (1), diperoleh
8x – 5y = 9
8x – 9 = 5y
Substitusi 5y = 8x – 9 ke persamaan (2)
3x + (8x – 9) = 31
11x – 9 = 31
11x = 31 + 9
11x = 40
x = 40/11
Substitusi x = 40/11 ke 5y = 8x – 9
5y = 8(40/11) – 9
5y = 320/11 – 99/11
5y = 221/11
y = 221/11 × 1/5
y = 221/55
HP = {(x, y)} = {(40/11, 221/55)}
Semoga membantu.
Penjelasan dengan langkah-langkah:
a.
6x + 3y = 1……………(1)
8x – 5y + 3 = 0………(2)
5y = 8x + 3
y = 1/5(8x + 3)
subtitusikan y kepersamaan (1)
6x + 3y = 1
6x + 3[ 1/5(8x + 3)] = 1
6x + 24/5x + 9/5 = 1
30x + 24x + 9 = 5
54x = – 4
x = – 4/54
x = – 2/27
subtitusikan nilai x ke persamaan (1)
6x + 3y = 1
6(-4/54) + 3y = 1
3y = 1 + 24/54
3y = 54/54 + 24/54
y = (78/54)/3
y = 26/54
y = 13/27
HP = { -2/27, 13/27 }
b.
8x – 5y – 9 = 0……….(1)
3x + 5y – 31 = 0…….(2)
5y = – 3x + 31
subtitusikan 5y kepersamaan (1)
8x – 5y – 9 = 0
8x – (-3x + 31) – 9= 0
8x + 3x – 31 – 9 = 0
11x = 40
x = 40/11
subtitusikan nilai x kepersamaan (1)
8x – 5y – 9 = 0
8(40/11) – 5y – 9 = 0
320/11 – 5y – 9 = 0
5y = 320/11 – 9 = 0
5y = 320/11 – 99/11 = 0
5y = 221/11
y = 221/55
HP = {40/11, 221/55}