Tentukan pusat dan jari – jari lingkaran L= x2 + y2 + 4x – 10y+ 13 = 0

Posted on

Tentukan pusat dan jari – jari lingkaran L= x2 + y2 + 4x – 10y+ 13 = 0

Jawaban:

x^2 + y^2 + 4x – 10y + 13 = 0

P( -1/2A ,-1/2B)

P ( -4/2 , -10/-2)

P( -2, 5)

r^2 = a^2 + b^2 – c

= (-2)^2 + 5^2 – 13

= 4 + 25 – 13

= 29 – 13

r^2 = 16

r = 4

smoga mmbnt7

x^2 + y^2 + 4x – 10y + 13 = 0

•••

P = (–A/2 , –B/2)

P = (–4/2 , –(–10)/2)

P = (–2 , 10/2)

P = (–2, 5)

r^2 = a^2 + b^2 – c

r^2 = (–2)^2 + 5^2 – 13

r^2 = 4 + 25 – 13

r^2 = 4 + 12

r^2 = 16

r = 4

Kesimpulan: ➡ Pusat (–2, 5) dan r = 4

=================================

Detail jawaban:

mapel: matematika

kelas: 11

BAB: lingkaran

kata kunci: titik pusat dan jari-jari

kode kategorisasi: 11.2.5.1