Tentukan pusat dan jari – jari lingkaran L= x2 + y2 + 4x – 10y+ 13 = 0
Jawaban:
x^2 + y^2 + 4x – 10y + 13 = 0
P( -1/2A ,-1/2B)
P ( -4/2 , -10/-2)
P( -2, 5)
r^2 = a^2 + b^2 – c
= (-2)^2 + 5^2 – 13
= 4 + 25 – 13
= 29 – 13
r^2 = 16
r = 4
smoga mmbnt7
x^2 + y^2 + 4x – 10y + 13 = 0
•••
P = (–A/2 , –B/2)
P = (–4/2 , –(–10)/2)
P = (–2 , 10/2)
P = (–2, 5)
r^2 = a^2 + b^2 – c
r^2 = (–2)^2 + 5^2 – 13
r^2 = 4 + 25 – 13
r^2 = 4 + 12
r^2 = 16
r = 4
Kesimpulan: ➡ Pusat (–2, 5) dan r = 4
=================================
Detail jawaban:
mapel: matematika
kelas: 11
BAB: lingkaran
kata kunci: titik pusat dan jari-jari
kode kategorisasi: 11.2.5.1