Bantuin dong yang tau​

Posted on

Bantuin dong yang tau​

Bantuin dong yang tau​

red{bold{a.}}

det~text{P}=|begin{array}{ccc}-1&0&3\2&-4&1\5&1&-2end{array}|begin{array}{ccc}-1&0\2&-4\5&1end{array}

det P = (–1).(–4).(–2) + (0).(1).(5) + (3).(2).(1) – (3).(–4).(5) – (–1).(1).(1) – (0).(2).(–2)

det P = –8 + 0 + 6 + 60 + 1 + 0

toboxed{boxed{dettext{~P}=59}}

purple{bold{b.}}

text{P}~-~text{Q}=[begin{array}{ccc}-1&-4&2\-1&-9&3\5&-2&-8end{array}]

det~(text{P}~-~text{Q})=|begin{array}{ccc}-1&-4&2\-1&-9&3\5&-2&-8end{array}|begin{array}{ccc}-1&-4\-1&-9\5&-2end{array}

det (P – Q) = (–1).(–9).(–8) + (–4).(3).(5) + (2).(–1).(–2) – (2).(–9).(5) – (–1).(3).(–2) – (–4).(–1).(–8)

det (P – Q) = –72 – 60 + 4 + 90 – 6 + 32

toboxed{boxed{det~(text{P}~-~text{Q})=-12}}