Help me guys. tolong nomer 12 dan 13 nya pakai cara ya…..
Jawaban:
12. A
13. A
Penjelasan dengan langkah-langkah:
12.
Pertama cari g^(-1)(x) = …
g(x) = 4x + 2
g^(-1)(4x + 2) = x
Misalkan.
(4x + 2) = a
4x = a – 2
x = (a – 2)/4
Jadi.
g^(-1)(a) = (a – 2)/4
Ubah a jadi x.
g^(-1)(x) = (x – 2)/4
Kedua, cari f^(-1)(x) = …
f(x) = x^2
f^(-1)(x^2) = x
Misalkan.
x^2 = a
x = a^(1/2)
f^(-1)(a) = a^(1/2)
Ubah a jadi x.
f^(-1)(x) = x^(1/2)
Ketiga,
(f^(-1) o g^(-1))(x) = 2
f^(-1)(g^(-1)(x)) = 2
f^(-1)((x – 2)/4) = 2
{(x-2)/4}^(1/2) = 2
penyebut 4 diakar, jadi 2, lalu dipindah ruas.
(x – 2)^(1/2) = 2 – 2
x^(1/2) – 2^(1/2) = 0
x ^(1/2) = 2^(1/2)
Kedua ruas dipangkat 2.
x = 2
13.
g^(-1)(2x/(x + 1)) = x
Misalkan.
a = 2x/(x + 1)
ax + a = 2x
2x – ax = a
x(2 – a) = a
x = a/(2-a)
g^(-1)(a) = a/(2-a)
g^(-1)(x) = x/(2 – x)
f^(-1)(x) = (x-1)/x
(f o g)^(-1)(x)
= (g^(-1) o f^(-1))(x)
= g^(-1)(f^(-1)(x))
= g^(-1)((x – 1)/x)
= {(x – 1)/x} ÷ {2 – (x + 1)/x}
= {(x – 1)/x} × {x/(x + 1)}
= (x – 1)/(x + 1) , x =/= -1