Himpunan dari( X²- 4 x +3 )pangkat x²+ 2x-15 = (2x-5)pangkat x²+2x-15 ​

Posted on

Himpunan dari( X²- 4 x +3 )pangkat x²+ 2x-15 = (2x-5)pangkat x²+2x-15 ​

 { ({x}^{2} - 4x + 3) }^{ {x}^{2} + 2x - 15} = {(2x - 5)}^{ {x}^{2} + 2x - 15 }

((x - 3)(x - 1))^{(x - 3)(x + 5)} = {(2x - 5)}^{(x - 3)(x + 5)}

(x – 3)(x + 5) = 0

x + 5 = 0

x₁ = -5

x – 3 = 0

x₂ = 3

(x – 3)(x – 1) = 2x – 5

x² – 4x + 3 = 2x – 5

x² – 4x – 2x + 3 + 5 = 0

x² – 6x + 8 = 0

(x – 4)(x – 2) = 0

x – 2 = 0

x₃ = 2

x – 4 = 0

x₄ = 4

• Jika x = x₁ = -5 (maka (x – 3)(x + 5) = 0) :

( : (( - 5) - 3)(( - 5) - 1) : )^{0} = (2( - 5) - 5) ^{0}

( : ( - 8)( -6) : )^{0} = ( - 10 - 5)^{0}

(42)⁰ = (-15)⁰

1 = 1 (memenuhi)

Maka, x₁ = -5 → Memenuhi

• Jika x = x₂ = 3

(maka (x – 3)(x + 5) = 0 dan (x – 3)(x – 1) = 0) :

(0)⁰ = (2(3) – 5)⁰

Tidak Tedifinisi = (6 – 5)⁰

Tidak Terdifinisi = (1)⁰

Tidak Terdifinisi = 1 (Tidak memenuhi)

Maka, x₂ = 3 → Tidak memenuhi

• Jika x = x₃ = 2

( ((2) – 3)((2) – 1) )⁽² ⁻ ³⁾⁽² ⁺ ⁵⁾ = (2(2) – 5)⁽² ⁻ ³⁾⁽² ⁺ ⁵⁾

( (-1)(1) )⁽⁻¹⁾⁽⁷⁾ = (4 – 5)⁽⁻¹⁾⁽⁷⁾

(-1)⁽⁻⁷⁾ = (-1)⁽⁻⁷⁾

 frac{1}{(-1)⁷} = frac{1}{(-1)⁷}

 frac{1}{-1} = frac{1}{-1}

-1 = -1 (Memenuhi)

Maka, x₃ = 2 → Memenuhi

• Jika x = x₄ = 4 :

( ((4) – 3)((4) – 1) )⁽⁽⁴⁾ ⁻ ³⁾⁽⁽⁴⁾ ⁺ ⁵⁾

= (2(4) – 5)⁽⁽⁴⁾ ⁻ ³⁾⁽⁽⁴⁾ ⁺ ⁵⁾

( (1)(3) )⁽¹⁾⁽⁹⁾ = (8 – 5)⁽¹⁾⁽⁽⁹⁾

(3)⁹ = (3)⁹

19683 = 19683 (Memenuhi)

Maka, x₄ = 4 → Memenuhi

Kesimpulan :

x₁ = -5 → Memenuhi

x₂ = 3 → Tidak memenuhi

x₃ = 2 → Memenuhi

x₄ = 4 → Memenuhi

Himpunan penyelesaian

= {5, 2, 4}