Buktikan bahwa tan x . sin x + cos x = sec x
Buktikan bahwa tan x · sin x + cos x = sec x Selengkapnya dapat disimak pada pembahasan di bawah ini!
PENDAHULUAN
Permasalahan di atas dapat diselesaikan dengan menggunakan rumus identitas trigonometri dan kita akan mengubah bentuk ruas kiri karena ruas kiri terlihat lebih kompleks.
Trigonometri adalah materi matematika yang berhubungan dengan perbandingan antara sudut dengan sisi pada segitiga.
Untuk menyelesaikan soal ini kita akan menggunakan rumus berikut, antara lain :
dengan demikian, diperoleh :
perlu diingat,
Kembali ke soal, mari simak penyelesaiannya pada pembahasan di bawah ini!
PEMBAHASAN
Diketahui :
Berdasarkan penjelasan singkat pada pendahuluan di atas, diketahui identitas trigonometri yang akan kita gunakan yaitu:
Ditanya : buktikan bahwa !
Jawab :
Kesimpulan : Jadi, berdasarkan langkah-langkah pengerjaan di atas dapat disimpulkan bahwa tan x · sin x + cos x = sec x terbukti ekuivalen.
PELAJARI LEBIH LANJUT
Materi tentang trigonometri lainnya dapat disimak di bawah ini :
- Nilai x yang memenuhi persamaan sin(x + 30°) + cos(x + 30°) = 0 pada interval 0° ≤ x ≤ 360° adalah brainly.co.id/tugas/11408177
- Buktikan identitas trigonometri (cos x + sin x)(cos – sin x) = 1 – 2 sin² x brainly.co.id/tugas/5091480
- Buktikan persamaan (2 tan x) / (1 + tan² x) ekuivalen dengan 2 sin x · cos x brainly.co.id/tugas/2794159
- Diketahui cos(A – B) = 3/5 dan cos A cos B = 7/25. Nilai tan A tan B adalah brainly.co.id/tugas/8632771
- Diketahui sin A= 12/13 dan cos B = 3/5, dengan A dan B sudut lancip. Nilai tan(A – B) adalah brainly.co.id/tugas/9691473
____________________________
DETIL JAWABAN
Kelas : X
Mapel : Matematika
Bab : Bab 7 – Trigonometri
Kode : 10.2.7
Kata kunci : identitas trigonometri, definisi trigonometri, ekuivalen