Jika lingkaran x^2 + y^2 +6x +k=0 dan x^2+y^2+8y -20=0. Saling bersinggungan dalam. Tentukan nilai k
Jawaban Terkonfirmasi
X² + y² + 6x + k = 0
(x + 3)² + (y – 0)² = 9 – k
P1 = (-3,0)
r1 = √(9 – k)
x² + y² + 8y – 20 = 0
(x – 0)² + (y + 4)² = 20 + 16
P2 = (0,-4)
r2 = √36 = 6
P1P2 = √((-3 – 0)² + (0 – (-4))²) = 5
P1P2 = r2 – r1
5 = 6 – √(9 – k)
√(9 – k) = 1
9 – k = 1
k = 8