Ukuran panjang sisi-sisi segitiga adalah 10cm,20cm dan 24 cm. Jenis segitiga yg tepat dengan ukuran tersebut adalah

Posted on

Ukuran panjang sisi-sisi segitiga adalah 10cm,20cm dan 24 cm. Jenis segitiga yg tepat dengan ukuran tersebut adalah

Jawaban:

Segitiga tumpul

Penjelasan dengan langkah-langkah:

c²= a²+b²

24²= 20²+10²

576 = 400+100

576= 500

576>500

Segitiga tumpul

Semoga membantu dan bermanfaat

Ukuran panjang sisi – sisi segitiga adalah 10 cm, 20 cm, dan 24 cm. Jenis segitiga yang tepat dengan ukuran tersebut adalah…

Jenis segitiga yang tepat untuk ukuran tersebut adalah segitiga tumpul

Pembahasan :

Segitiga adalah bangun datar yang memiliki 3 sisi yang terdiri dari 4 jenis yaitu, segitiga siku – siku, segitiga lancip, segitiga tumpul,dan segitiga sembarang.

Dalam materi ini, untuk menentukan jenis segitiga apabila diketahui panjang sisinya dapat ditentukan teorema Pythagoras yaitu :

Dimisalkan sisi c adalah sisi terpanjang :

• Segitiga siku – siku

c {}^{2} = a {}^{2} + b { }^{2}

• Segitiga tumpul

c {}^{2} > a {}^{2} + b {}^{2}

• Segitiga lancip

c {}^{2} < a {}^{2} + b {}^{2}

Dalam soal tersebut sisi terpajang (c) adalah 24 cm dan sisi pendeknya (a dan b) adalah 10 cm dan 20 cm. Untuk mengetahui jenis segitiga apa, maka kita kuadratkan masing-masing ukurannya.

c = 24 cm

a = 10 cm

b = 20 cm

Maka, untuk membuktikannya :

c {}^{2} = 24 {}^{2} \ : : : : : = 576

Sementara itu untuk a dan b di kuadratkan lalu di jumlahkan .

a {}^{2} + b {}^{2} = 10 {}^{2} + 20 {}^{2} \ : : : : : : : : : : : : : : : = 100 + 400 \ : : : : : : : : : : : : : : : : = 500

Ternyta dapat ditentukan bahwa :

576 > 500

Jadi, dapat ditentukan bahwa jenis segitiga tersebut adalah segitiga tumpul

Pelajari Lebih Lanjut :

Detail Jawaban :

  • Mapel : Matematika
  • Kelas : 8
  • Materi : Teorema Pythagoras
  • Kode Kategorisasi : 8.1.2
  • Kata Kunci : Jenis Segitiga