a. -3 dan 2 c. 2 dan -3
b. -2 dan 3 d. 3 dan -2
7. Suatu fungsi linear didefinisikan dengan f(x) = ax + b dengan x R. Jika pada fungsi tersebut diketahui f(-2) = -8 dan f(5) = 13, maka nilai a dan b berturut-turut adalah ….
Jawab:
1. Jika F(x) = ax2 + bx + 15, F(-1) = 0 dan F(3) = 0, maka F(4) = …. Jawab : F(x) = [](x+1)(x-3) → F(x) = [](x2 – 2x – 3) → F(x) = 315(x2 – 2x – 3) F(x) = -5(x+1)(x-3), maka F(4) = -5(4+1)(4-3) = -25 2. Jika F(x) = 3×2 + ax + b, F(1) = 4, dan F(2) = 4, maka F(3) = …. Jawab : F(x) = 3(x-1)(x-2) + 4 → F(3) = 3(3-1)(3-2) + 4 = 10 3. Diketahui F(x) = x2 + ax + b, jika F(1) = 1 dan F(2) = 2, maka F(3) = …. Jawab : F(x) = (x-1)(x-2) + a(x-1) + 1 → F(2) = (2-1)(2-2) + a(2-1) + 1 → F(2) = a + 1 F(2) = a + 1 → 2 = a + 1 → a = 1 → F(x) = (x-1)(x-2) + x F(3) = (3-1)(3-2) + 3 = 5 4. Diketahui F(x) = 2×2 + ax + b, jika F(1) = 5 dan F(2) = 9, maka F(3) = …. Jawab : F(x) = 2(x-1)(x-2) + a(x-1) + 5 → F(2) = 2(2-1)(2-2) + a(2-1) + 5 9 = a + 5 → a = 4 sehingga F(x) = 2(x-1)(x-2) + 4x + 1, maka F(3) = 2.2.1 + 12 + 1 = 17 5. F(x) = ax2 + bx + c, F(1) = 3, F(2) = 7, dan F(3) = 13. Tentukan F(4) ? jawab : F(x) = a(x-1)(x-2) + b(x-1) + 3 → F(2) = b + 3 → b = 4 F(3) = 2a + 7 → a = 3 → F(x) = 3(x-1)(x-2) + 4(x-1) + 3, maka F(4) = 24 6. Jika F(x) = ax2 + bx + c, F(1) = ½, F(2) = 2/3, F(3) = ¾, maka F(4) = …. Jawab : F(1) = ½ → F(n) = 1nn → F(n).(n+1) = n → F(n).(n+1) – n = 0, sehingga a(x-1)(x-2)(x-3) = F(x).(x+1) – x → a.-2.-3.-4 = 1 → a= -241 -241(x-1)(x-2)(x-3) = F(x).(x+1) – x → -241.3.2.1 = F(4).5 – 4 → F(4) = ¾
Penjelasan dengan langkah-langkah:
Penjelasan dengan langkah-langkah:
jawabannya D. 3 dan -2
selamat mengerjakan