a long aluminum wire of diameter 3 mm is extruded at a temperature of 370°c. the wire is subjected to cross air flow at 30°c at a velocity of 6 m/s. determine the rate of heat transfer from the wire to the air per meter length when it is first exposed to the air.

Posted on

a long aluminum wire of diameter 3 mm is extruded at a temperature of 370°c. the wire is subjected to cross air flow at 30°c at a velocity of 6 m/s. determine the rate of heat transfer from the wire to the air per meter length when it is first exposed to the air.

answer:

Explanation:

Given:

Diameter of aluminum wire, D = 3mm

Temperature of aluminum wire, T_{s}=280^{o}CT

s

=280

o

C

Temperature of air, T_{infinity}=20^{o}CT

infinity

=20

o

C

Velocity of air flow V=5.5m/sV=5.5m/s

The film temperature is determined as:

begin{gathered}T_{f}=frac{T_{s}-T_{infinity}}{2}\\=frac{280-20}{2}\\=150^{o}Cend{gathered}

T

f

=

2

T

s

−T

infinity

=

2

280−20

=150

o

C

from the table, properties of air at 1 atm pressure

At T_{f}=150^{o}CT

f

=150

o

C

Thermal conductivity, K = 0.03443 W/m^oCK=0.03443W/m

o

C ; kinematic viscosity v=2.860 times 10^{-5} m^2/sv=2.860×10

−5

m

2

/s ; Prandtl number Pr=0.70275Pr=0.70275

The reynolds number for the flow is determined as:

begin{gathered}Re=frac{VD}{v}\\=frac{5.5 times(3times10^{-3})}{2.86times10^{-5}}\\=576.92end{gathered}

Re=

v

VD

=

2.86×10

−5

5.5×(3×10

−3

)

=576.92

sice the obtained reynolds number is less than 2times10^52×10

5

, the flow is said to be laminar.

The nusselt number is determined from the relation given by:

Nu_{cyl}= 0.3 + frac{0.62Re^{0.5}Pr^{frac{1}{3}}}{[1+(frac{0.4}{Pr})^{frac{2}{3}}]^{frac{1}{4}}}[1+(frac{Re}{282000})^{frac{5}{8}}]^{frac{4}{5}}Nu

cyl

=0.3+

[1+(

Pr

0.4

)

3

2

]

4

1

0.62Re

0.5

Pr

3

1

[1+(

282000

Re

)

8

5

]

5

4

begin{gathered}Nu_{cyl}= 0.3 + frac{0.62(576.92)^{0.5}(0.70275)^{frac{1}{3}}}{[1+(frac{0.4}{(0.70275)})^{frac{2}{3}}]^{frac{1}{4}}}[1+(frac{576.92}{282000})^{frac{5}{8}}]^{frac{4}{5}}\\=12.11end{gathered}

Nu

cyl

=0.3+

[1+(

(0.70275)

0.4

)

3

2

]

4

1

0.62(576.92)

0.5

(0.70275)

3

1

[1+(

282000

576.92

)

8

5

]

5

4

=12.11

The covective heat transfer coefficient is given by:

Nu_{cyl}=frac{hD}{k}Nu

cyl

=

k

hD

Rewrite and solve for hh

begin{gathered}h=frac{Nu_{cyl}timesk}{D}\\=frac{12.11times0.03443}{3times10^{-3}}\\=138.98 W/m^{2}.Kend{gathered}

h=

D

Nu

cyl

timesk

=

3×10

−3

12.11×0.03443

=138.98W/m

2

.K

The rate of heat transfer from the wire to the air per meter length is determined from the equation is given by:

begin{gathered}Q=hA_{s}(T_{s}-T{infin})\\=htimes(pitimesDL)times(T_{s}-T{infinity})\\=138.92times(pitimes3times10^{-3}times1)times(280-20)\\=340.42W/mend{gathered}

Q=hA

s

(T

s

−T∞)

=h×(πtimesDL)×(T

s

−Tinfinity)

=138.92×(π×3×10

−3

×1)×(280−20)

=340.42W/m

The rate of heat transfer from the wire to the air per meter length is Q=340.42W/mQ=340.42W/m

Penjelasan:

.