Apabila f ( x ) = integral { ax + 2 ( a – 1 ) } dx , f ( – 2 ) = – 12 , dan f ( 2 ) = 4 maka f ( 1 ) =

Posted on

Apabila f ( x ) = integral { ax + 2 ( a – 1 ) } dx , f ( – 2 ) = – 12 , dan f ( 2 ) = 4 maka f ( 1 ) =

integral

f(x) =  ∫(ax  + 2(a- 1)) dx

f(x)= ∫(ax  + 2a- 2) dx

f(x)=   1/2 a x² +  2a x  - 2x + c

f(-2) = -12 –> 2a  - 4a + 4 + c  =  - 12

-2a + c =   -16

f(2) = 4 –>  2a  + 4a –  4 + c =  4

6a + c =  8

-2a + c = – 16

6a + c =  8

-8a  =  - 24

a =  3

6a + c =  8

18 + c = 8

c  = 10

f(x) = 1/2 a x² +  2a x  - 2x + c

f(x)=  1/2 . 3 x² +  2. 3.  x  - 2x + 10

f(1) =   3/2 + 6 – 2  + 10 =  15¹/₂