Apabila f ( x ) = integral { ax + 2 ( a – 1 ) } dx , f ( – 2 ) = – 12 , dan f ( 2 ) = 4 maka f ( 1 ) =
integral
–
f(x) = ∫(ax + 2(a- 1)) dx
f(x)= ∫(ax + 2a- 2) dx
f(x)= 1/2 a x² + 2a x - 2x + c
f(-2) = -12 –> 2a - 4a + 4 + c = - 12
-2a + c = -16
f(2) = 4 –> 2a + 4a – 4 + c = 4
6a + c = 8
-2a + c = – 16
6a + c = 8
-8a = - 24
a = 3
6a + c = 8
18 + c = 8
c = 10
f(x) = 1/2 a x² + 2a x - 2x + c
f(x)= 1/2 . 3 x² + 2. 3. x - 2x + 10
f(1) = 3/2 + 6 – 2 + 10 = 15¹/₂