Buat resume tentang sejarah perkembangan Hadits:) ​

Posted on

Buat resume tentang sejarah perkembangan Hadits:) ​

Penjelasan:

|x-2| < 3

-3 < x-2 < 3

-3 + 2 < x < 3 + 2

-1 < x < 5

Jadi, nilai-nilai x yang memenuhi pertidaksamaan |x-2| < 3 adalah -1 < x < 5.

2. Carilah himpunan penyelesaian dari |3x + 4 | ≤ 5 !

Pembahasan

|3x + 4 | ≤ 5

-5 ≤ 3x + 4 ≤ 5

-5 – 4 ≤ 3x ≤ 5 – 4

-9 ≤ 3x ≤ 1

-9/3 ≤ x ≤ ⅓

-3 ≤ x ≤ ⅓

Jadi, himpunan penyelesaian dari |3x + 4 | ≤ 5 adalah {-3 ≤ x ≤ ⅓}.

3. Nilai-nilai x yang memenuhi |x/2 + 3 | > 5/4 adalah …

Pembahasan

Pertama, mari sederhanakan pertidaksamaan untuk menghilangkan bentuk pecahan dengan mengalikan kedua ruas dengan 4.

4 × |x/2 + 3 | > 4 × 5/4

|2x + 12 | > 5

Berdasarkan sifat pertidaksamaan nilai mutlak, maka:

2x + 12 < – 5 atau 2x + 12 > 5

2x + 12 < – 5

2x < – 5 – 12

2x < – 17

x < -17/2

Atau

2x + 12 > 5

2x > 5 -12

2x > -7

x > -7/2

Jadi, nilai-nilai x yang memenuhi adalah x < -17/2 atau x > -7/2.

4. Tentukan nilai-nilai x yang memenuhi |3-x| > 0 !

Pembahasan

|3-x| > 0

Karena nilai mutlak tidak mungkin bernilai negatif, maka |3-x| akan menghasilkan nilai positif atau 0.

Nilai x yang memenuhi |x-3| = 0 adalah

x – 3 = 0

x = 3

Berarti, |3-x| akan selalu bernilai positif untuk nilai x selain 3.

Jadi, nilai-nilai x yang memenuhi |3-x| > 0 adalah {x|x ≠ 3}.

5. Carilah himpunan penyelesaian dari |3x – 4| < 5 dan x < 1.

Pembahasan

Pertidaksamaan pertama:

|3x – 4| < 5

-5 < 3x – 4 < 5

-5 + 4 < 3x < 5 + 4

-1 < 3x < 9

-1/3 < x < 9/3

-1/3 < x < 3 … (1)

Pertidaksamaan kedua:

x < 1 … (2)

Untuk 2 pertidaksamaan, kita cari irisan dari keduanya.

Karena batas atas (2) lebih kecil dari pada batas atas (1), maka kita gunakan batas atas milik (2)

Karena batas bawah (1) lebih besar dari pada batas bawah (2), maka kita gunakan batas bawah milik (1)

Sehingga diperoleh

-1/3 < x < 1

Jadi, himpunan penyelesaian dari |3x – 4| < 5 dan x < 1 adalah -1/3 < x < 1.

6. Semua nilai x yang memenuhi 0 < |x – 2 | ≤ 2 adalah

Pembahasan

Pertidaksamaan di atas ekuivalen dengan |x – 2 | > 0 dan |x – 2 | ≤ 2

Cari himpunan penyelesaian dari |x – 2 | > 0

Pertidaksamaan ini terpenuhi untuk setiap nilai x kecuali pembuat nol di ruas kiri, yaitu x = 2.

Maka, himpunan penyelesaiannya adalah

HP1 = {x | x ≠ 2}

Cari himpunan penyelesaian dari |x – 2 | ≤ 2

|x – 2 | ≤ 2

-2 ≤ x – 2 ≤ 2

-2 + 2 ≤ x ≤ 2 + 2

0 ≤ x ≤ 4

Maka, himpunan penyelesaiannya adalah

HP2 = {x | 0 ≤ x ≤ 4}

Karena ada 2 himpunan penyelesaian, kita cari irisannya, yaitu:

HP = HP1 ∩ HP2

HP = {x | x ≠ 2} ∩ {x | 0 ≤ x ≤ 4}

HP = {x | 0 ≤ x < 2 atau 2 < x ≤ 4}

Jadi, semua nilai x yang memenuhi {x | 0 ≤ x < 2 atau 2 < x ≤ 4} adalah {x | 0 ≤ x < 2 atau 2 < x ≤ 4}.