Buktikan rumus tersebutC² = √A²+B² – 2AB . Cos ∅​

Posted on

Buktikan rumus tersebutC² = √A²+B² – 2AB . Cos ∅​

Penjelasan dengan langkah-langkah:

perhatikan gambar!

Pada segitiga BCD, definisi cosinus:

 cos(c) = frac{cd}{a}

cd = a cdot cos(c)

sehingga panjang DA:

DA = b – cos (C)

dan

 sin(c) = frac{bd}{a}

a cdot sin(c) = bd

seperti yang kita ketahui:

pada segitiga ADB berlaku aturan phytagoras:

 {c}^{2} = {bd}^{2} + {da}^{2}

 {c}^{2} = (a cdot sin(c) )^{2} + (b - a cdot cos(c) )^{2}

 small{{c}^{2} = {a}^{2} sin^{2} (c) + {b}^{2} - 2ab cdot cos(c) + {a}^{2} cdot cos^{2} (c) }

 small{{c}^{2} = {a}^{2} cdot sin^{2} (c) + {a}^{2} cdot cos^{2} (c) + {b}^{2} - 2ab cdot cos(c) }

 small{{c}^{2} = {a}^{2} (sin^{2} (c) + cos^{2} (c) )+ {b}^{2} - 2ab cdot cos(c) }

terapkan identitas

 sin^{2} ( theta) + cos^{2} ( theta) = 1

sehingga

 small{{c}^{2} = {a}^{2} (1 )+ {b}^{2} - 2ab cdot cos(c) }

 small{{c}^{2} = {a}^{2}+ {b}^{2} - 2ab cdot cos(c) }

terbukti!

Gambar Jawaban