Contoh contoh soal spltv metode substitusi​

Posted on

Contoh contoh soal spltv metode substitusi​

Jawaban:

Carilah himpunan penyelesaian SPLTV berikut ini dengan metode subtitusi.

x – 2y + z = 6

3x + y – 2z = 4

7x – 6y – z = 10

JAWABAN

⇒ x – 2y + z = 6

⇒ x = 2y – z + 6

■ Subtitusikan variabel atau peubah x ke dalam persamaan kedua

⇒ 3x + y – 2z = 4

⇒ 3(2y – z + 6) + y – 2z = 4

⇒ 6y – 3z + 18 + y – 2z = 4

⇒ 7y – 5z + 18 = 4

⇒ 7y – 5z = 4 – 18

⇒ 7y – 5z = –14 ……………….. Pers. (1)

■ Subtitusikan variabel x ke dalam persamaan ketiga

⇒ 7x – 6y – z = 10

⇒ 7(2y – z + 6) – 6y – z = 10

⇒ 14y – 7z + 42 – 6y – z = 10

⇒ 8y – 8z + 42 = 10

⇒ 8y – 8z = 10 – 42

⇒ 8y – 8z = –32

⇒ y – z = –4 ……………….. Pers. (2)

■ Persamaan (1) dan (2) membentuk SPLDV y dan z:

7y – 5z = –14

y – z = –4

■ Selanjutnya kita selesaikan SPLDV tersebut dengan metode subtitusi. Pilih salah satu persamaan yang paling sederhana yaitu persamaan kedua. Dari persamaan kedua, kita peroleh

⇒ y – z = –4

⇒ y = z – 4

■ Subtitusikan peubah y ke dalam persamaan pertama

⇒ 7y – 5z = –14

⇒ 7(z – 4) – 5z = –14

⇒ 7z – 28 – 5z = –14

⇒ 2z = –14 + 28

⇒ 2z = 14

⇒ z = 14/2

⇒ z = 7

■ Subtitusikan nilai z = 7 ke salah satu SPLDV, misal y – z = –4 sehingga kita peroleh

⇒ y – z = –4

⇒ y – 7 = –4

⇒ y = –4 + 7

⇒ y = 3

■ Selanjutnya, subtitusikan nilai y = 3 dan z = 7 ke salah satu SPLTV, misal x – 2y + z = 6 sehingga kita peroleh

⇒ x – 2y + z = 6

⇒ x – 2(3) + 7 = 6

⇒ x – 6 + 7 = 6

⇒ x + 1 = 6

⇒ x = 6 – 1

⇒ x = 5

Dengan demikian, kita peroleh nilai x = 5, y = 3 dan z = 7. Sehingga himpunan penyelesaian dari SPLTV di atas adalah {(5, 3, 7)}.

Penjelasan dengan langkah-langkah:

JADIKAN JAWABAN TERCERDAS