Contoh soal pembuktian langsung, kontraposisi, kontradiksi, dan induksi matematika
Jawaban:
Pembuktian langsung, kontraposisi, kontradiksi, dan induksi matematika akan dijelaskan dalam artikel ini secara mudah, melalui contoh di kehidupan sehari-hari dan lingkungan sekitar.
Logika dalam matematika? Pembuktian? Gimana tuh maksudnya? Logika dalam matematika bisa diingat kembali materinya di logika . bulat.
Bila definisinya sudah benar, kita ke pernyataan selanjutnya. Karena kita ingin membuktikan jumlah dua bilangan genap, maka berdasarkan definisi di atas, jumlah dua bilangan genap bisa kita jabarkan seperti ini:
m + n = 2k + 2i
Kemudian, kamu juga butuh sedikit memanipulasi penjumlahan itu agar bisa mendapat bentuk yang diinginkan. m + n = 2k + 2i bisa kita ubah menjadi 2 (k + i), dengan (k + i) juga bilangan bulat.
m + n = 2k + 2i = 2 (k + i), dengan (k + i) bilangan bulat.
Artinya, kalau mau membuktikan pernyataan p akan menghasilkan pernyataan q itu benar, maka buktikan aja pernyataan bukan q maka menghasilkan bukan p. Bingung, ya? Nah, untuk memahami lebih lanjut, coba deh buktikan:
“Bila n bilangan bulat dan 7n + 9 bilangan genap, maka n bilangan ganjil”
Gimana nih membuktikannya pakai kontraposisi? Misalnya, pernyataan p adalah 7n + 9 bilangan genap, dan pernyataan q adalah n bilangan ganjil. Maka, yang kita buktikan adalah bila n bukan bilangan ganjil (bilangan genap), maka 7n + 9 bukan bilangan genap (bilangan ganjil). Jadi, negasi dari kebalikannya, ya. Penyelesaian lebih lanjutnya begini:
Misalkan ada bilangan genap sembarang n. Dari definisi bilangan genap, n dapat dinyatakan sebagai berikut:
n = 2k, dengan k bilangan bulat.
Selanjutnya, karena n = 2k, maka 7n + 9 bisa dituliskan menjadi 7n + 9 = 7(2k) + 9 atau 2 (7k) + 9.
contoh pembuktian kontraposisi
Nah, 7k + 4 sudah pasti merupakan bilangan bulat juga karena di awal, kita memisalkan k adalah bilangan bulat. 7k + 4 bisa dimisalkan dengan m, sehingga:
2(7k) + 9 = 2m + 1, dengan m bilangan bulat.
Sesuai definisi bilangan ganjil, maka 2(7k) + 9 atau 7n + 9 adalah bilangan ganjil. Terbukti kan bila n bukan bilangan ganjil, maka 7n + 9 juga bukan bilangan genap. Secara nggak langsung, dapat disimpulkan deh bila n bilangan bulat dan 7n + 9 bilangan genap maka n bilangan ganjil, hehehe…
3. Kontradiksi
Kontradiksi ini juga termasuk pembuktian tidak langsung. Kita memanfaatkan prinsip logika matematika, yaitu:
Jika p → q bernilai benar padahal q salah, maka p salah
Hmm gimana tuh maksudnya? Coba deh kita buktikan pernyataan ini dengan kontradiksi.
“Bila n bilangan bulat dan n bilangan genap, maka 7n + 9 bilangan ganjil”
Nah, kita misalkan dulu pernyataan p adalah n bilangan genap dan pernyataan q adalah 7n + 9 adalah bilangan ganjil. Maka, dengan kontradiksi, kita buktikan pernyataan n bukan bilangan genap (bilangan ganjil), maka untuk 7n + 9 adalah bilangan ganjil benar akan muncul suatu kontradiksi. Coba deh perhatikan penyelesaiannya di bawah ini:
Misalkan ada bilangan ganjil sembarang n. Dari definisi bilangan ganjil, n dapat dinyatakan sebagai berikut:
n = 2k + 1, dengan k bilangan bulat.
Karena n = 2k + 1, maka 7n + 9 dapat dituliskan menjadi:
contoh pembuktian kontradiksi
7k + 5 pastinya merupakan bilangan bulat juga karena k adalah bilangan bulat. Kita bisa misalkan 7k + 5 dengan m, sehingga:
7n + 9 = 14k + 10 = 2m
Nah, 14k + 10 atau 7n + 9 dapat dinyatakan dalam 2 kali suatu bilangan bulat. Padahal, itu merupakan definisi bilangan genap. Berarti, kontradiksi dengan asumsi awal yang menyatakan 7n + 9 adalah bilangan ganjil. Itu artinya, asumsi awal n adalah bilangan ganjil, salah.
Lihat kan, ternyata ada kontradiksi bila n adalah bilangan ganjil? Maka, secara tidak langsung, pernyataan "bila n bilangan genap, maka 7n + 9 bilangan ganjil" benar.
4. Induksi Matematika
Induksi matematika digunakan untuk membuktikan suatu pernyataan untuk setiap bilangan asli. Untuk melakukan pembuktian menggunakan induksi matematika, ada langkah-langkahnya, nih. Bagaimana langkah-langkah melakukan induksi matematika?
langkah-langkah dalam induksi matematika 1
Wadu, maksudnya apa tuh ya langkah-langkah di atas. Oke, biar nggak bingung, mending langsung aja kita aplikasikan ke contoh soal di bawah ini.
Buktikan deret 1 + 2 + 3 + … + n = 1/2 n(n+1)
Langkah pertama
Kita akan buktikan untuk n = 1 adalah benar. Karena pernyataan tersebut merupakan deret, maka n di sini maksudnya jumlah suku pertama deret tersebut. Nah, yang diminta n = 1, berarti jumlah suku pertamanya hanyalah 1. Kemudian, kita substitusi semua n dengan 1. Jadi,
contoh pembuktian induksi matematika
Langkah pertama terbukti ya karena ruas kiri dan kanannya sama.
Langkah kedua
Kita asumsikan pernyataan benar untuk n = k. Berarti jumlah suku pertamanya itu dari 1 + 2 + 3 + … + k, ya. Sehingga,
contoh pembuktian induksi matematika
Pernyataan tersebut kita asumsikan atau kita anggap benar. Kemudian, kita lanjut ke langkah ketiga.