Contoh soal pembuktian langsung, kontraposisi, kontradiksi, dan induksi matematika​

Posted on

Contoh soal pembuktian langsung, kontraposisi, kontradiksi, dan induksi matematika​

Jawaban:

Pembuktian langsung, kontraposisi, kontradiksi, dan induksi matematika akan dijelaskan dalam artikel ini secara mudah, melalui contoh di kehidupan sehari-hari dan lingkungan sekitar.

Logika dalam matematika? Pembuktian? Gimana tuh maksudnya? Logika dalam matematika bisa diingat kembali materinya di logika . bulat.

Bila definisinya sudah benar, kita ke pernyataan selanjutnya. Karena kita ingin membuktikan jumlah dua bilangan genap, maka berdasarkan definisi di atas, jumlah dua bilangan genap bisa kita jabarkan seperti ini:

m + n = 2k + 2i

Kemudian, kamu juga butuh sedikit memanipulasi penjumlahan itu agar bisa mendapat bentuk yang diinginkan. m + n = 2k + 2i bisa kita ubah menjadi 2 (k + i), dengan (k + i) juga bilangan bulat.

m + n = 2k + 2i = 2 (k + i), dengan (k + i) bilangan bulat.

Artinya, kalau mau membuktikan pernyataan p akan menghasilkan pernyataan q itu benar, maka buktikan aja pernyataan bukan q maka menghasilkan bukan p. Bingung, ya? Nah, untuk memahami lebih lanjut, coba deh buktikan:

“Bila n bilangan bulat dan 7n + 9 bilangan genap, maka n bilangan ganjil”

Gimana nih membuktikannya pakai kontraposisi? Misalnya, pernyataan p adalah 7n + 9 bilangan genap, dan pernyataan q adalah n bilangan ganjil. Maka, yang kita buktikan adalah bila n bukan bilangan ganjil (bilangan genap), maka 7n + 9 bukan bilangan genap (bilangan ganjil). Jadi, negasi dari kebalikannya, ya. Penyelesaian lebih lanjutnya begini:

Misalkan ada bilangan genap sembarang n. Dari definisi bilangan genap, n dapat dinyatakan sebagai berikut:

n = 2k, dengan k bilangan bulat.

Selanjutnya, karena n = 2k, maka 7n + 9 bisa dituliskan menjadi 7n + 9 = 7(2k) + 9 atau 2 (7k) + 9.

contoh pembuktian kontraposisi

Nah, 7k + 4 sudah pasti merupakan bilangan bulat juga karena di awal, kita memisalkan k adalah bilangan bulat. 7k + 4 bisa dimisalkan dengan m, sehingga:

2(7k) + 9 = 2m + 1, dengan m bilangan bulat.

Sesuai definisi bilangan ganjil, maka 2(7k) + 9 atau 7n + 9 adalah bilangan ganjil. Terbukti kan bila n bukan bilangan ganjil, maka 7n + 9 juga bukan bilangan genap. Secara nggak langsung, dapat disimpulkan deh bila n bilangan bulat dan 7n + 9 bilangan genap maka n bilangan ganjil, hehehe…

3. Kontradiksi

Kontradiksi ini juga termasuk pembuktian tidak langsung. Kita memanfaatkan prinsip logika matematika, yaitu:

Jika p → q bernilai benar padahal q salah, maka p salah

Hmm gimana tuh maksudnya? Coba deh kita buktikan pernyataan ini dengan kontradiksi.

“Bila n bilangan bulat dan n bilangan genap, maka 7n + 9 bilangan ganjil”

Nah, kita misalkan dulu pernyataan p adalah n bilangan genap dan pernyataan q adalah 7n + 9 adalah bilangan ganjil. Maka, dengan kontradiksi, kita buktikan pernyataan n bukan bilangan genap (bilangan ganjil), maka untuk 7n + 9 adalah bilangan ganjil benar akan muncul suatu kontradiksi. Coba deh perhatikan penyelesaiannya di bawah ini:

Misalkan ada bilangan ganjil sembarang n. Dari definisi bilangan ganjil, n dapat dinyatakan sebagai berikut:

n = 2k + 1, dengan k bilangan bulat.

Karena n = 2k + 1, maka 7n + 9 dapat dituliskan menjadi:

contoh pembuktian kontradiksi

7k + 5 pastinya merupakan bilangan bulat juga karena k adalah bilangan bulat. Kita bisa misalkan 7k + 5 dengan m, sehingga:

7n + 9 = 14k + 10 = 2m

Nah, 14k + 10 atau 7n + 9 dapat dinyatakan dalam 2 kali suatu bilangan bulat. Padahal, itu merupakan definisi bilangan genap. Berarti, kontradiksi dengan asumsi awal yang menyatakan 7n + 9 adalah bilangan ganjil. Itu artinya, asumsi awal n adalah bilangan ganjil, salah.

Lihat kan, ternyata ada kontradiksi bila n adalah bilangan ganjil? Maka, secara tidak langsung, pernyataan "bila n bilangan genap, maka 7n + 9 bilangan ganjil" benar.

4. Induksi Matematika

Induksi matematika digunakan untuk membuktikan suatu pernyataan untuk setiap bilangan asli. Untuk melakukan pembuktian menggunakan induksi matematika, ada langkah-langkahnya, nih. Bagaimana langkah-langkah melakukan induksi matematika?

langkah-langkah dalam induksi matematika 1

Wadu, maksudnya apa tuh ya langkah-langkah di atas. Oke, biar nggak bingung, mending langsung aja kita aplikasikan ke contoh soal di bawah ini.

Buktikan deret 1 + 2 + 3 + … + n = 1/2 n(n+1)

Langkah pertama

Kita akan buktikan untuk n = 1 adalah benar. Karena pernyataan tersebut merupakan deret, maka n di sini maksudnya jumlah suku pertama deret tersebut. Nah, yang diminta n = 1, berarti jumlah suku pertamanya hanyalah 1. Kemudian, kita substitusi semua n dengan 1. Jadi,

contoh pembuktian induksi matematika

Langkah pertama terbukti ya karena ruas kiri dan kanannya sama.

Langkah kedua

Kita asumsikan pernyataan benar untuk n = k. Berarti jumlah suku pertamanya itu dari 1 + 2 + 3 + … + k, ya. Sehingga,

contoh pembuktian induksi matematika

Pernyataan tersebut kita asumsikan atau kita anggap benar. Kemudian, kita lanjut ke langkah ketiga.