D. Jika Y=X4 carilah dy/dx

Posted on

D. Jika Y=X4 carilah dy/dx

Penjelasan dengan langkah-langkah:

• DiferentiaL

we have a function :

y = ( {x}^{4} + 2x)( {x}^{3} + 2 {x}^{2} + 1)y=(x

4

+2x)(x

3

+2x

2

+1)

Let :

u = {x}^{4} + 2x = > frac{du}{dx} = 4 {x}^{3} + 2u=x

4

+2x=>

dx

du

=4x

3

+2

v = {x}^{3} + 2 {x}^{2} + 1 = > frac{dv}{dx} = 3 {x}^{2} + 4xv=x

3

+2x

2

+1=>

dx

dv

=3x

2

+4x

Use the form of differential , hence :

begin{gathered} frac{dy}{dx} = frac{du}{dx} : . : v + u : . : frac{dv}{dx} \ frac{dy}{dx} = (4 {x}^{3} + 2)( {x}^{3} + 2 {x}^{2} + 1) + ( {x}^{4} + 2x)(3 {x}^{2} + 4x) \ frac{dy}{dx} = 4 {x}^{6} + 8 {x}^{5} + 4 {x}^{3} + 2 {x}^{3} + 4 {x}^{2} + 2 + 12 {x}^{6} + 4 {x}^{5} + 6 {x}^{3} + 8 {x}^{2} \ frac{dy}{dx} =16 {x}^{6} + 12 {x}^{5} + 12 {x}^{3} + 12 {x}^{2} + 2end{gathered}

dx

dy

=

dx

du

.v+u.

dx

dv

dx

dy

=(4x

3

+2)(x

3

+2x

2

+1)+(x

4

+2x)(3x

2

+4x)

dx

dy

=4x

6

+8x

5

+4x

3

+2x

3

+4x

2

+2+12x

6

+4x

5

+6x

3

+8x

2

dx

dy

=16x

6

+12x

5

+12x

3

+12x

2

+2