Dari barisan geometri, diketahui U2 = 27 dan U4 = 3. Jumlah 8 suku pertama barisan tersebut adalah..
Diketahui:
U2 = a . r = 27
U4 = a . r^3 = 3
Ditanyakan:
S8 = … ?
Penyelesaian:
cari rasio deret
r^3/r = 3/27
r^2 = 1/9
r = 1/3
suku pertama
a . r^3 = 3
a . (1/3)^3 = 3
a . 1/27 = 3
a = 81
Sn = a (1 – r^n)/(1 – r)
S8 = 81 (1 – (1/3)^8))/(1 – 1/3)
S8 = 81 (6.560/6.561)/(2/3)
S8 = 243/2 . 6560/6561
S8 = 3.280/27
S8 = 121 13/27
==================
Detil Jawaban
Kelas: 9
Mapel: Matematika
Bab: Barisan dan Deret Bilangan
Kode: 9.2.2
Kata Kunci: Deret Geometri
Penjelasan dengan langkah-langkah:
r = ^(4 – 2)√(U4 : U2)
r = ²√(3 : 27)
r = √(1/9)
r = 1/3
a = U2 : r
a = 27 : 1/3
a = 27 . 3/1
a = 81
Sn = a . (1 – r^n)/(1 – r)
S8 = 81 . (1 – (1/3)^8)/(3/3 – 1/3)
S8 = 81 . (6.561/6.561 – 1/6.561) / (2/3)
S8 = 81 . 6.560/6.561 . 3/2
S8 = 3.280/27
S8 = 121 14/27
Kelas 9
Pelajaran Matematika
Bab Barisan dan Deret Bilangan