Diketahui

Posted on

A_2_times_2=[a_i_j]=ij

B_2_times_2=[b_i_j]=i-j dan

C_2_times_2=[c_i_j]=~|i-j|
pernyataan berikut yang BENAR adalah?
(1) Jika A+B=C+D maka D_2_times_2=[d_i_j]=ij

(2) Jika AB=XC maka X=[x_i_j]=-(ij)

(3) B tidak mempunyai invers

(4) A matriks singular

Diketahui

Jawaban Terkonfirmasi

Dengan elemen yang dibuat dengan rumus berikut, berlaku:

a_{11}=1times1=1 \ a_{12}=1times2=2 \ a_{21}=2times1=2 \ a_{22}=2times2=4

Memberikan:

A= left[begin{array}{cc}a_{11}&a_{12}\a_{21}&a_{22}end{array}right]=left[begin{array}{cc}1&2\2&4end{array}right]

Lanjutkan.

b_{11}=1-1=0 \ b_{12}=1-2=-1 \ b_{21}=2-1=1 \ b_{22}=2-2=0

Memberikan:

B= left[begin{array}{cc}b_{11}&b_{12}\b_{21}&b_{22}end{array}right]=left[begin{array}{cc}0&-1\1&0end{array}right]

Satu lagi:

c_{11}=|1-1|=0 \ c_{12}=|1-2|=1 \ c_{21}=|2-1|=1 \ c_{22}=|2-2|=0

Didapat:

C= left[begin{array}{cc}c_{11}&c_{12}\c_{21}&c_{22}end{array}right]=left[begin{array}{cc}0&1\1&0end{array}right]

Maka

Pernyataan 1.

$begin{align}A+B&=C+D \ D&=A+B-C \ D&=left[begin{array}{cc}1&2\2&4end{array}right]+left[begin{array}{cc}0&-1\1&0end{array}right]-left[begin{array}{cc}0&1\1&0end{array}right] \ D&=left[begin{array}{cc}1&0\2&4end{array}right]end{align}

Cek pada pola matriks D, tampak tidak berlaku karena berbeda dengan matriks A.

Pernyataan 2.

$begin{align}AB&=XC \ X&=ABC^{-1} \ X&=left[begin{array}{cc}1&2\2&4end{array}right]left[begin{array}{cc}0&-1\1&0end{array}right]timesleft[begin{array}{cc}0&1\1&0end{array}right]^{-1} \ X&=left[begin{array}{cc}2&-1\4&-2end{array}right]left[begin{array}{cc}0&1\1&0end{array}right] \ X&=left[begin{array}{cc}-1&2\-2&4end{array}right]end{align}

Jika dicermati, seharusnya membentuk:

D_{2times2}=[D_{ij}]=(-1)^jtimes ij

Pernyataan 3.
Determinan B memiliki nilai:
det B = 0.0 – 1 (-1)
det B = 1
Matriks B memiliki invers.

Pernyataan 4.
Cek determinan:
det A = 1.4 – 2.2
det A = 0
Matriks A singular.