Diketahui (fog)(x)=x^2-6x+7 dan f(x)=x+3. Tentukan a) rumus fungsi g(x) b) fungsi invers f^-1 c) tentukan f^-1o(fog)!
Dik:
(fog)(x) = x² – 6x + 7
f(x) = x + 3
⇒ mencari g(x):
(fog)(x) = f(g(x))
x² – 6x + 7 = g(x) + 3
g(x) + 3 = x² – 6x + 7
g(x) = x² – 6x + 7 – 3
g(x) = x² – 6x + 4
⇒ invers f^(-1) (x)
f(x) = x + 3
f^(-1) (x) = x – 3
⇒ mencari (f^-1o(fog))
dik:
(fog)(x) = x² – 6x + 7
f(x) = x + 3
⇒ mencari g(x):
(fog)(x) = f(g(x))
x² – 6x + 7 = g(x) + 3
g(x) + 3 = x² – 6x + 7
g(x) = x² – 6x + 7 – 3
g(x) = x² – 6x + 4
⇒ invers f^(-1) (x)
f(x) = x + 3
f^(-1) (x) = x – 3
⇒ mencari (f^-1o(fog))
f^(-1)o(fog)
= f^(-1) f(x² - 6x + 4)
= f^(-1) x² - 6x + 4 + 3
= f^(-1) x² - 6x + 7
= x² – 6x + 7 – 3
= x² – 6x + 4
Diketahui :
(fog)(x) = x² - 6x + 7 dan f(x)=x+3
Penyelsaian :
a) Untuk nilai g(x) :
(fog)(x)=x² - 6x + 7
⇒ f(g(x))=x² - 6x + 7
⇒ (g(x)) + 3 =x² - 6x + 7
⇒ (g(x)) =x² - 6x + 7 - 3
⇒ g(x) = x² - 6x + 4
b) Untuk nilai f⁻¹ :
f(x) = x+3
⇒ f(x) = x+3 (rubah f(x) menjadi y sehingga) :
⇒ y = x + 3 (tukarkan tempat x dan y sehingga) :
⇒ x = y – 3
⇒ f⁻¹(x) = x – 3
c) Untuk nilai f⁻¹o(fog) :
f⁻¹o(fog) = f⁻¹((fog))
= f⁻¹(x² - 6x + 7)
= (x² - 6x + 7) – 3
= x² - 6x + 7 – 3
= x² - 6x + 4