1. a log 12
2. a log 36
3. a log 96
4. a log(9a^4)
5. a log(16a^2)
6. a log(2/3)
7. a log (0,66666)
Jika alog2=p dan alog3=q nyatakan pernyataan berikut dalam p dan q
Diketahui :
– a log 2 = p
– a log 3 = q
Ditanya :
– a log 12 = …..?
– a log 36 = …..?
– a log 96 = …..?
– a log (9a⁴) = …..?
– a log (16a²) = …..?
– a log (2/3) = …..?
– a log (0,66..) = …..?
Penyelesaian :
– a log 12 :
a log 12
= a log (3 × 2²)
= a log 3 + a log 2²
= q + 2 a log 2
= q + 2p
= 2p + q
– a log 36 :
a log 36
= a log (3² × 2²)
= a log 3² + a log 2²
= 2 a log 3 + 2 a log 2
= 2q + 2p
= 2p + 2q
– a log 96 :
a log 96
= a log (3 × 2^5)
= a log 3 + a log 2^5
= q + 5 a log 2
= q + 5p
= 5p + q
– a log (9a⁴) :
a log (9a⁴)
= a log (3² × a⁴)
= a log 3² + a log a⁴
= 2 a log 3 + 4 a log a
= 2q + 4(1)
= 2q + 4
– a log (16a²) :
a log (16a²)
= a log (2⁴ × a²)
= a log 2⁴ + a log a²
= 4 a log 2 + 2 a log a
= 4p + 2(1)
= 4p + 2
– a log (2/3) :
a log (2/3)
= a log 2 – a log 3
= p – q
– a log (0,66..) :
a log (0,66..)
= a log (2/3)
= a log 2 – a log 3
= p – q
Sorry Kalau Salah