Jika dari suatu barisan geometri diketahui Un=12 dan Un+3=96 maka Un+4 adalah
Un = 12 = ar^(n-1)
12 = ar^(n) / r
12r = ar^(n)
U₍ₙ₊₃₎ = 96 = ar^(n+3 – 1) = ar^(n+2)
U₍ₙ₊₄₎ = ar^(n+3) = ?
U₍ₙ₊₄₎ = ar^(n+3) = ar^(n+2) . r <=ar^(n+3) = 96
= 96r = 8. 12r
Un + U(n+3) = 12+96
ar^(n-1)+ar^(n+2) = 108
ar^(n)(r^(-1)+r^(2)) = 108
12r(r^(-1)+r^(2)) = 108
12+12r² = 108
12r² = 96
r² = 8
r = 2√2
12r = 24√2
U(n+4) = 8.12r = 8.(24√2)
= 192√2