Jikay = (x^3 + 2x^2 + 3x -1)/x, maka y’ = . . . .

Posted on

Jikay = (x^3 + 2x^2 + 3x -1)/x, maka y’ = . . . .

Jawaban Terkonfirmasi

y' = 2x + 2 + frac{1}{ {x}^{2} }

Pembahasan

text{Turunan untuk fungsi} : : f(x) : : text{dinotasikan dengan} : : f'(x). : : text{Turunan fungsi} : : y : : text{dinotasikan dengan} : : y'. \ \

Definisi Turunan

boxed{y' = f'(x) = lim limits_{h to 0} frac{f(x + h) - f(x)}{h}} \ \

Rumus turunan fungsi aljabar

boxed{y = k cdot {x}^{n} : Rightarrow : y' = kn cdot {x}^{n - 1}} \ \

Diketahui :

y = frac{ {x}^{3} + 2 {x}^{2} + 3x - 1 }{x} \ \

Ditanya :

y' \ \

Jawab :

Cara ❶.

y = frac{ {x}^{3} + 2 {x}^{2} + 3x - 1 }{x} \ \ y = {x}^{2} + 2x + 3 - frac{1}{x} \ \ y' = 2x + 2 + 0 + frac{1}{ {x}^{2} } \ \ y' = 2x + 2 + frac{1}{ {x}^{2} } \ \

Cara ❷.

y = frac{ {x}^{3} + 2 {x}^{2} + 3x - 1 }{x} \ \ y = {x}^{2} + 2x + 3 - frac{1}{x} \ \ y' = lim limits_{h to 0} frac{f(x + h) - f(x)}{h} \ \ y' = lim limits_{h to 0} frac{ {(x + h)}^{2} + 2(x + h) + 3 - frac{1}{(x + h)} - ( {x}^{2} + 2x + 3 - frac{1}{x} ) }{h} \ \ y' = lim limits_{h to 0} frac{ {x}^{2} + 2xh + {h}^{2} + 2x + 2h + 3 - frac{1}{(x + h)} - ( {x}^{2} + 2x + 3 - frac{1}{x} ) }{h} \ \ y' = lim limits_{h to 0} frac{ 2xh + {h}^{2} + 2h - frac{1}{(x + h)} + frac{1}{x} }{h} \ \ y' = lim limits_{h to 0} frac{ 2xh + {h}^{2} + 2h + frac{1}{x} - frac{1}{(x + h)} }{h} \ \ y' = lim limits_{h to 0} frac{ 2xh + {h}^{2} + 2h + frac{h}{x(x + h)} }{h} \ \ y' = lim limits_{h to 0} left ( 2x + h + 2 + frac{1}{x(x + h)} right ) \ \ y' = 2x + 2 + frac{1}{ {x}^{2} } \ \

Kesimpulan :

y' = boxed{2x + 2 + frac{1}{ {x}^{2} }} \ \

Pelajari Lebih Lanjut

Turunan aljabar

brainly.co.id/tugas/13437141

Turunan operasi perkalian

brainly.co.id/tugas/15233596

Turunan pertama dari fungsi f(x) = 2x/ x2-5

brainly.co.id/tugas/15154232

Turunan pertama fungsi trigonometri

brainly.co.id/tugas/9428441

Turunan fungsi y = 1/(x – 2)

brainly.co.id/tugas/272365

Detail Jawaban

Kelas : 11

Mapel : Matematika

Materi : Bab 9 – Turunan Fungsi Aljabar

Kode Kategorisasi : 11.2.9

Kata Kunci : turunan, fungsi aljabar

#TingkatkanPrestasimu