Jumlah dari 1/1*2 + 1/2*3 + 1/3*4 + … + 1/49*50 =
.
Jawaban Terkonfirmasi
Bentuk 1/n(n+1) = 1/n – 1/(n + 1)
1/1.2 = 1 – 1/2
1/2.3 = 1/2 – 1/3
1/3.4 = 1/3 – 1/4
.
.
.
1/49.50 = 1/49 – 1/50
__________________ +
1 – 1/50 = 49/50
Jumlah dari 1/1*2 + 1/2*3 + 1/3*4 + … + 1/49*50 =
.
Bentuk 1/n(n+1) = 1/n – 1/(n + 1)
1/1.2 = 1 – 1/2
1/2.3 = 1/2 – 1/3
1/3.4 = 1/3 – 1/4
.
.
.
1/49.50 = 1/49 – 1/50
__________________ +
1 – 1/50 = 49/50