Minta bantuannya guys

Posted on

Minta bantuannya guys

Minta bantuannya guys

Jawaban Terkonfirmasi

^{2}log (x^{2} – 2x + 1) = 0
^{2}log (x^{2} – 2x + 1) = ^{2}log 1
x^{2} – 2x + 1 = 1
x^{2} – 2x + 1 – 1 = 0
x^{2} – 2x = 0
x ( x – 2) = 0
x_{1} = 0 atau x_{2} – 2 = 0
x_{1} = 0
x_{2} = 2

log (x^{2} – 1) – log (x-1) = 1 + log (x – 8)
log frac{x^{2}-1}{x-1} = log 10 + log (x – 8)
log frac{(x-1)(x+1)}{x-1} = log 10(x – 8)
frac{(x-1)(x+1)}{x-1} = 10(x – 8)
x + 1 = 10x – 80
10x – x = 80 + 1
9x = 81
x = frac{81}{9} = 9

^{5}log^{2} x – ^{5}log x^{6} + 5 = 0
(^{5}logx)(^{5}logx) – 6^{5}logx + 5 = 0
jika ^{5}logx = a, maka persamaan diatas menjadi:
(a x a) – 6a + 5 = 0
a^{2} – 6a + 5 = 0
(a – 5)(a – 1) = 0
a_{1} – 5 = 0 atau a_{2} – 1 = 0
a_{1} = 5
a_{2} = 1
nilai a disubstitusikan ke persamaan ^{5}logx = a, maka
^{5}logx_{1} = a_{1}
^{5}logx_{1} = 5
^{5}logx_{1} = ^{5}log5^{5}
x_{1} = 5^{5} = 3125
^{5}logx_{2} = a_{2}
^{5}logx_{2} = 1
^{5}logx_{2} = ^{5}log0
x_{2} = 0
jadi, x_{1} = 3125, x_{2} = 0