Nilai minimum dari: -3cos 5x +  4sin5x

Posted on

Nilai minimum dari: -3cos 5x +  4sin5x

Klo sudah pernah belajar differensial, mungkin bgini cara
nilai minimum/maksimum diperoleh jika
 frac{d}{dx}(-3cos5x+4sin5x) =0
(-3)(5)(-sin5x)+(4)(5)(cos5x)=0
15sin5x+20cos5x=0
15sin5x=-20cos5x
 frac{sin5x}{cos5x} = frac{-20}{15}
 tan5x = frac{-4}{3}

ada 2 kemungkinan
sin5x = frac{-4}{3} dan  cos5x = frac{3}{5}
atau
sin5x = frac{4}{3} dan  cos5x = frac{-3}{5}

substitusi keduanya,
sehingga didapat minimum dari 
-3cos5x+4sin5x
= -3(frac{3}{5})+4(frac{-4}{3})
= frac{-9}{5} +frac{-16}{3}
= frac{-25}{5}
= -5