NT Exercise: Decimal Expressions

Posted on

1. Prove that a number's decimal expression has finitely many decimal places if and only if the denominator (after simplification) is in the form of 2^a × 5^b where a and b are nonnegative integers.

2. Prove that the decimal representation of every rational number is eventually periodic.​

NT Exercise: Decimal Expressions

Jawaban Terkonfirmasi

Problem 1
Prove that a number's decimal expression has finitely many decimal places if and only if the denominator (after simplification) is in the form of 2^a times 5^b where a and b are nonnegative integers.

Solution

Let q=n/dinmathbb{Q} where n and d are relatively prime numbers, so that n/d can not be further simplified. If a decimal expression of q has FINITELY many decimal places, without loss of generality, we can arbitrarily choose an odd number k in mathbb{N}, so that
q=dfrac{n}{d}=c_0.c_1c_2c_3{,dots,}c_k
(c_0 is the integer part, while .c_1c_2c_3{,dots,}c_k is the fraction part of q)

Thus,

begin{aligned}frac{n}{d}&=10^0c_0+10^{-1}c_1+10^{-2}c_2+10^{-3}c_3+{dots}+10^{-k}c_k\&=frac{c_0}{10^0}+frac{c_1}{10^1}+frac{c_2}{10^2}+frac{c_3}{10^3}+{dots}+frac{c_k}{10^k}\frac{n}{d}&=frac{c_0}{10^0}+frac{c_k}{10^k}+frac{c_1}{10^1}+frac{c_{k-1}}{10^{k-1}}+frac{c_2}{10^2}+frac{c_{k-2}}{10^{k-2}}\&:;vdots +frac{c_3}{10^3}+frac{c_{k-3}}{10^{k-3}}+{dots}+frac{c_{(k-1)/2}}{10^{(k-1)/2}}+frac{c_{(k+1)/2}}{10^{(k+1)/2}}\end{aligned}
begin{aligned}frac{n}{d}&=frac{10^kc_0+10^{k-1}c_1+10^{k-2}c_2+{dots}+10^2c_{k-2}+10c_{k-1}+c_k}{10^k}\frac{n}{d}&=frac{C}{10^k}implies frac{10^{k}n}{d}=C,, Cinmathbb{Z}\end{aligned}

Because dnmid n and C is an integer, d has to be a factor of 10^k, implying dmid 10^kimplies dmid (2times5)^k. Both 2 and 5 are prime numbers. Hence, d has to be in the form of 2^atimes5^b where a and b are nonnegative integers (a or b may possibly be 0), and a,b le  k.  blacksquare

__________________

Problem 2
Prove that the decimal representation of every rational number is eventually periodic.​

Solution

If a rational number x is eventually periodic, we can write it as
x=a_0.a_1a_2a_3...a_noverline{b_1b_2b_3...b_k}
(a_0 is the integer part, a_1a_2a_3...a_n is the non-repeating part, and overline{b_1b_2b_3...b_k} is the repeating part of x)

Backward proof: If the decimal representation of x is eventually periodic, then xinmathbb{Q} (x is a rational number).

begin{aligned}x&=a_0.a_1a_2a_3...a_noverline{b_1b_2b_3...b_k}\&=a_0.a_1a_2a_3...a_n+frac{1}{10^n} (0.overline{b_1b_2b_3...b_k})\end{aligned}

a_0.a_1a_2a_3...a_n inmathbb{Q}, so it is enough to show that y=0.overline{b_1b_2b_3...b_k} in mathbb{Q}.

begin{aligned}y&=0.overline{b_1b_2b_3...b_k}\&=b_1b_2b_3...b_kleft(frac{1}{10^k}+frac{1}{10^{2k}}+frac{1}{10^{3k}}+{dots}right)\&=frac{b_1b_2b_3...b_k}{10^k}underbrace{left(1+frac{1}{10^k}+frac{1}{10^{2k}}+{dots}right)}_{sf geometric series}\&=frac{b_1b_2b_3...b_k}{10^k}left(frac{1}{1-dfrac{1}{10^k}}right)\y&=frac{b_1b_2b_3...b_k}{10^k-1}end{aligned}

Both numerator and denominator are positive integers, so yinmathbb{Q}, and it proves that xinmathbb{Q}.  blacksquare

Forward proof: If xinmathbb{Q} (x is a rational number), then the decimal representation of x is eventually periodic.

Let x=dfrac{a}{b}inmathbb{Q}, a,binmathbb{Z}.

We can take displaystyle a_1=left lfloor frac{a}{b} right rfloor  and c_0=dfrac{a}{b}-a_0, so that

begin{aligned}&frac{a}{b}=a_0+c_0 Rightarrow a=a_0b+r_0\&quad{sf where} r_0=bc_0\end{aligned}

Take a_1=left lfloor 10c_0 right rfloor and c_1=10c_0-a_1, so that

begin{aligned}10r_0&=b(10c_0)\&=b(a_1+c_1)\&=a_1b+bc_1\10r_0&=a_1b+r_1\& {sf where} r_1=bc_1\end{aligned}

Trying to do an inductive approach, let's define:

a_k=left lfloor 10c_{k-1} right rfloor and c_k=10c_{k-1}-a_k, forall,kinmathbb{N}.

By the same logic as 10r_0, we get:

10r_{k-1}=a_kb+r_k, where r_k=bc_k

Note that 0 le 10c_k < 10, implying 0 le a_k le 9, forall kinmathbb{N}.

Because 0 le r_k < b  forall,k, there exists m,ninmathbb{N}, so that n > m, and r_n = r_m.

Hence, we get

begin{cases}10r_m=a_{m+1}+r_{m+1}\10r_n=a_{n+1}+r_{n+1}end{cases}

By division algorithm, we get a_{m+1}=a_{n+1} and r_{m+1}=r_{n+1}.

So, a_{m+i}=a_{n+i}  forall,iinmathbb{N}.

Thus x=a_0.a_1a_2a_3...a_moverline{a_{m+1}a_{m+2}...a_n} is eventually periodic, and it completes the proof.  blacksquare