Persamaan garis yang melalui titik (2,-2) dan sejajar dengan garis x + 2y-4= 0 adalah​

Posted on

Persamaan garis yang melalui titik (2,-2) dan sejajar dengan garis x + 2y-4= 0 adalah​

Jawaban Terkonfirmasi

Persamaan garis yang melalui titik (2, -2) dan sejajar dengan garis text {x + 2y - 4 = 0} adalah​ text x + 2text y + 2 = 0

Pendahuluan

Persamaan garis lurus adalah suatu persamaan garis yang jika digambarkan ke dalam suatu bidang koordinat Cartesius maka akan membentuk suatu garis lurus. Garis lurus ini mempunyai nilai kecondongan suatu garis yang disebut sebagai gradien (disimbolkan dengan huruf m )

Secara umum, persamaan umum garis dapat dinyatakan dengan bentuk

1)  Persamaan implisit : boxed {text {ax + by + c = 0}}

2) Persamaan explisit : boxed {text {y = mx + c}}

Pembahasan

  1. Gradien garis dilambangkan dengan huruf m.
  2. Gradien (kecondongan/kemiringan) sebuah garis yang memiliki persamaan text {ax + by + c} = 0 adalah boxed {text m = -frac{text a}{text b}}
  3. Persamaan garis yang melalui titik text A(text x_1, text y_1) dengan gradien m adalah boxed {text y~-~text y_1 = text m(text x~-~text x_1)}
  4. Gradien garis yang melalui dua buah titik yaitu text A(text x_1, text y_1) dan text B(text x_2, text y_2) adalah displaystyle {boxed {text m = frac{text y_2 ~-~ text y_1}{text x_2 ~-~text x_1}}}
  5. Jika dua garis saling sejajar maka gradiennya adalah sama (text m_1 = text m_2)
  6. Jika dua garis saling berpotongan tegak lurus maka hasil kali kedua gradiennya adalah -1   (text m_1 times text m_2 = -1 atau {text m_2 = -frac{1}{text m_1}})

Penyelesaian

Diketahui :

Garis : text {x + 2y - 4 = 0}

Titik A(2, -2)

Ditanyakan :

Persamaan garis melalui A dan sejajar text {x + 2y - 4 = 0}

Jawab :

Menentukan gradien garis text {x + 2y - 4 = 0}

Gradien garis dengan persamaan text {ax + by + c} = 0 adalah  {text m = -frac{text a}{text b}}

Maka gradien garis text {x + 2y - 4 = 0} adalah {text m_1 = -frac{text 1}{text 2}}

Syarat gradien garis saling sejajar

Gradien garis saling sejajar adalah text m_1 = text m_2 = -frac{1}{2}

Menentukan persamaan garis yang ditanyakan

Persamaan garis yang melalui titik text A(text x_1, text y_1) dengan gradien m₂ adalah {text y~-~text y_1 = text m_2(text x~-~text x_1)}

Garis melalui titik A(2, -2) dengan gradien text m_2 = -frac{1}{2}

{text y~-~text y_1 = text m_2(text x~-~text x_1)}

text y~-~(-2) = -frac{1}{2} (text x~-~2)

text y~+~2       = -frac{1}{2} (text x~-~2) ———- kedua ruas dikalikan dengan 2

2(text y~+~2)   = 2(-frac{1}{2} (text x~-~2))

2text y~+~4      = -text x~+~2

text x + 2text y~+~4~-~2 = 0

text x + 2text y~+~2 = 0

∴ Jadi persamaannya adalah text x + 2text y + 2 = 0

Pelajari lebih lanjut :

  1. Grafik garis lurus : brainly.co.id/tugas/1279059
  2. Gradien sebuah garis : brainly.co.id/tugas/20619546
  3. Gradien garis : brainly.co.id/tugas/234640
  4. Gradien garis yang melalui dua buah titik : brainly.co.id/tugas/120478
  5. Persamaan garis yang saling tegak lurus : brainly.co.id/tugas/1744288
  6. Persamaan garis melalui titik tertentu dan sejajar garis lain : brainly.co.id/tugas/8947718

_________________________________________________________

Detail Jawaban

Kelas          : 8

Mapel         : Matematika

Kategori     : Gradien garis

Kode           : 8.2.5

Kunci          : Persamaan garis melalui titik tertentu dengan gradien m

                     Garis saling sejajar

#CerdasBersamaBrainly

#BelajarBersamaBrainly