Q. [ + 50 ]

Posted on

Diketahui persamaan kuadrat x² + 4x – 12 = 0, Tentukan nilai bf x_1 dan bf x_2 dengan menggunakan rumus ABC​

Q. [ + 50 ]

Jawab:
x₁ = 2,
x₂ = -6

Penjelasan dengan langkah-langkah:
Diketahui
1x² + 4x – 12 = 0
ax² + bx + c = 0
a = 1, b = 4, c = -12

Ditanya x₁ dan x₂

sf x_{1, :2}=frac{-bpm sqrt{b^2-4ac}}{2a}\\x_{1, :2}=frac{-4pm sqrt{4^2-4(1)(-12)}}{2(1)}\\x_{1, :2}=frac{-4pm sqrt{16+48}}{2}\\x_{1, :2}=frac{-4}{2}pmfrac{sqrt{64}}{2}\\x_{1, :2}=-2pmfrac{8}{2}
x₁  ₂ = -2±4
Hp = {-2+4, -2-4}
Hp = {2, -6}

[[ KLF ]]

•› Jwbn 。.゚

.

x² + 4x – 12 = 0

  • a = 1
  • b = 4
  • c = -12

__

 sf : x = frac{ - b pm sqrt{ {b}^{2} - 4ac} }{2a} \

 sf : x=frac{-4±sqrt{4^{2}-4left(-12right)}}{2} \

 sf x=frac{-4±sqrt{16-4left(-12right)}}{2} \

 sf : x=frac{-4±sqrt{16+48}}{2} \

 sf : x=frac{-4±sqrt{64}}{2} \

 sf : x=frac{-4±8}{2} \

 sf : x_1=frac{4}{2} \

 sf : x_1 = 2

 sf : x_2=frac{-12}{2} \

 sf : x_2 = - 6

HP = { -6, 2 }

.

sf underline{ underline{ blue{ mathbb{T}ime } : green{mathbb{ B}reake}}}