Q.usuka sin(60°) × cos(60°) + csc(30°) _______layar belah …​

Posted on

Q.usuka sin(60°) × cos(60°) + csc(30°) _______layar belah ...​

Q.usuka sin(60°) × cos(60°) + csc(30°) _______layar belah …​

boxed{bf{sin(60circ)times cos(60circ)+csc(30circ)=boxed{bf{frac{1}{4}sqrt{3}+2}}}}

 :

Trigonometri

Pendahuluan

A.) Definisi

.) Perbandingan Trigonometri

Pada segitiga siku-siku ABC, berlaku :

smallmathbf{left(a.right)  sinalpha=frac{y}{r}=frac{de}{mi}}

smallmathbf{left(b.right)  cosalpha=frac{x}{r}=frac{sa}{mi}}

smallmathbf{left(c.right)  tanalpha=frac{y}{x}=frac{de}{sa}}

smallmathbf{left(d.right)  cscalpha=frac{1}{sinalpha}=frac{r}{y}}

smallmathbf{left(e.right)  secalpha=frac{1}{cosalpha}=frac{r}{x}}

smallmathbf{left(f.right)  cotalpha=frac{1}{tanalpha}=frac{y}{x}}

 :

B.) Sudut dan Kuadran

1.) Pembagian Daerah

boxed{begin{array}{c|c|c|c|c}underline{mathbf{Kuadran}}&underline{mathbf{I}}&underline{mathbf{II}}&underline{mathbf{III}}&underline{mathbf{IV}}\&&&\mathbf{absis(x)}&mathbf{+}&mathbf{-}&mathbf{-}&mathbf{+}\&&&\mathbf{Ordinat(y)}&mathbf{+}&mathbf{+}&mathbf{-}&mathbf{-}end{array}}

2.) Tanda-tanda Fungsi

boxed{begin{array}{c|c|c|c|c}underline{mathbf{Kuadran}}&underline{mathbf{I}}&underline{mathbf{II}}&underline{mathbf{III}}&underline{mathbf{IV}}\&&&\mathbf{sin}&mathbf{+}&mathbf{+}&mathbf{-}&mathbf{-}\&&&\mathbf{cos}&mathbf{+}&mathbf{-}&mathbf{-}&mathbf{+}\&&&\mathbf{tan}&mathbf{+}&mathbf{-}&mathbf{+}&mathbf{-}end{array}}

3.) Sudut-sudut Istimewa

boxed{begin{array}{c|c|c|c|c}underline{mathbf{Kuadran}}&underline{mathbf{0^{circ}}}&underline{mathbf{30^{circ}}}&underline{mathbf{45^{circ}}}&underline{mathbf{60^{circ}}}\&&&\mathbf{sin}&mathbf{0}&mathbf{frac{1}{2}}&mathbf{frac{1}{2}sqrt{2}}&mathbf{frac{1}{2}sqrt{3}}\&&&\mathbf{cos}&mathbf{1}&mathbf{frac{1}{2}sqrt{3}}&mathbf{frac{1}{2}sqrt{2}}&mathbf{frac{1}{2}}\&&&\mathbf{tan}&mathbf{0}&mathbf{frac{1}{3}sqrt{3}}&mathbf{1}&mathbf{sqrt{3}}end{array}}  boxed{begin{array}{c}underline{mathbf{90^{circ}}}\\mathbf{1}\\mathbf{0}\\inftyend{array}}

4.) Sudut Berelasi

a.   Kalau kita gunakan (90°± …) atau (270°± …)

    1.) Fungsi berubah

boxed{begin{array}{c|c}underline{mathbf{Mula-mula}}&underline{mathbf{Perubahan}}\\mathbf{sin}&mathbf{+/-cos}\\mathbf{cos}&mathbf{+/-sin}\\mathbf{tan}&mathbf{+/-cot}end{array}}

    2.)  Tanda +/- mengikuti kuadran

 :

b.   kalau kita gunakan (180°± …) atau (360°− …)

    1.) Fungsi tetap

boxed{begin{array}{c|c}underline{mathbf{Mula-mula}}&underline{mathbf{Perubahan}}\\mathbf{sin}&mathbf{+/-sin}\\mathbf{cos}&mathbf{+/-cos}\\mathbf{tan}&mathbf{+/-tan}end{array}}

 :

 :

Pembahasan

Diketahui :

sin(60°) × cos(60°) + csc(30°)

Ditanya :

Hasil dari tersebut?

Jawaban :

mathbf{sinleft(60circright)=frac{1}{2}sqrt{3}}

mathbf{cosleft(60 circ right)=frac{1}{2}}

begin{aligned} mathbf{cscleft(30 circ right)  } &mathbf{=frac{1}{sinleft(30right)}}\ mathbf{cscleft(30 circ right)  } &mathbf{=frac{1}{frac{1}{2}}}\ mathbf{cscleft(30 circ right)  } &mathbf{=2} end{aligned}

maka

bf{sin(60circ)times cos(60circ)+csc(30circ)}

bf{=frac{1}{2}sqrt{3}timesfrac{1}{2}+2}

boxed{bf{=frac{1}{4}sqrt{3}+2}}

 :

 :

Pelajari Lebih Lanjut :

 :

 :

Detail Jawaban :

Grade : SMA

Kode Kategorisasi : 10.2.6

Kelas : 10

Kode Mapel : 2

Pelajaran : Matematika

Bab : 6

Sub Bab : Bab 6 – Trigonometri Dasar

 :

Kata Kunci : Trigonometri dasar, sin, cos, csc.

Gambar Jawaban

Gambar Jawaban

Gambar Jawaban

Penjelasan dengan langkah-langkah:

sin(60°) × cos(60°) + csc(30°)

=sffrac{sqrt{3}}{2} × sffrac{1}{2} + 2

=sffrac{sqrt{3}}{4}+{2}