##Quiz #23 ##

Posted on

• edisi pagi
• poin besar
• no spam
• gampang bangeet

============
soal #1
jika log 2 = p, tentukan nilai
log 156,25 dalam p!

soal #2
tentukan nilai maksimum & minimum dari fungsi :
f(x) = √7 cos (1/7π) – 2√7

##Quiz #23 ##

Quiz #23

soal1

log 2 = p

log 10 = log 2 + log 5 = 1

log 5 = 1 – p

log 156,25

= log 156 1/4

= log 625/4

= log 5⁴ – log 2²

= 4 log 5 – 2 log 2

= 4(1 – p) – 2p

= 4 6p

soal2

nilai maksimum cos ax = 1

nilai minimum cos ax = -1

soal sy edit

f(x) = √7 cos (1/7 x) – 2√7

Nilai maks = √7 . 1 – 2√7 = – √7

Nilai min = √7 . (-1) – 2√7 = – 3√7

1.

LOGARITMA

log (156,25) = log(¼(156,25 × 4))

= log(625) -log(4)

= log(10.000/16) -log(2²)

= log(10.000) -log(16) -2 log(2)

= log(10⁴) -log(2⁴) -2p

= 4 -4 log(2) -2p

= 4 -4p -2p

= 4 -6p

2.

GRAFIK FUNGSI TRIGONOMETRI

f(x) = √7 cos(⅐x) -2√7

f(x) = (cos(⅐x) -2)√7

nilai maksimum terjadi jika cos(⅐x) = 1

= (1 -2)√7

= -√7 => nilai maksimum

nilai minimum terjadi jika cos(⅐x) = -1

= (-1 -2)√7

= -3√7 => nilai minimum