Quiz (+50):

Posted on

Fungsi f(x) = (ax³+bx²+cx+d)(1/d)
–> turun pada interval penyelesaian dari |2x|÷|3| > |2x+1|
–> melewati titik (0, 1)
–> memiliki nilai ordinat titik stasioner maksimum yaitu -⅛

Nilai d – a + b(c) = ………..

Quiz (+50):

complications

|2x| / |3| > |2x + 1|

|2x| > |6x + 3||

(8x + 3)(-4x – 3) > 0

-3/4 < x < -3/8

f(x) = (ax³ + bx² + cx + d)(1/d)

interval TURUN

f'(x) < 0

1/d (3ax² + 2bx + c) < 0

3ax² + 2bx + c < 0

-3/4 < x < -3/8

akar dr 3ax² + 2bx + c = 0 :

-3/4 dan -3/8

(8x + 3)(-4x – 3) = 0

-32x² – 36x – 9 = 0

32x² + 36x + 9 = 0

kesamaan letak

3a = 32

a = 32/3

2b = 36

b = 18

c = 9

f(x) = ∫(32x² + 36x + 9)

f(x) = 32/3 x³ + 18x² + 9x + C

melalui titik (0,1)

f(0) = 1

C = 1

f(x) = 32/3 x³ + 18x² + 9x + 1

f(x) = 1/3 (32x³ + 54x² + 27x + 3)

f(x) = (ax³ + bx² + cx + d)(1/d)

f(x) = 1/3 (32x³ + 54x² + 27x + 3)

d – a + bc

= 3 – 32 + (54 × 27)

= 1429

Gambar Jawaban