Tentukan bentuk sederhana dari 4(1+√2)(1-√2) per / ÷ 3+2√2

Posted on

Tentukan bentuk sederhana dari
4(1+√2)(1-√2)
per / ÷
3+2√2

Jawaban Terkonfirmasi

Dengan demikian,
$begin{align}frac{4(1+sqrt{2})(1-sqrt{2})}{3+2sqrt{2}}&=frac{4(1^2-sqrt{2^2})}{3+2sqrt{2}} \ &=frac{4(1-2)}{3+2sqrt{2}} \ &=frac{4(-1)}{3+2sqrt{2}} \ &=frac{-4}{3+2sqrt{2}}timesfrac{3-2sqrt{2}}{3-2sqrt{2}} \ &=frac{-4(3-2sqrt{2})}{3^2-(2sqrt{2})^2} \ &=frac{-12+8sqrt{2}}{9-8} \ &=frac{8sqrt{2}-12}{1} \ &=8sqrt{2}-12end{align}

Jawaban Terkonfirmasi

 displaystyle frac{4(1+ sqrt{2}) (1- sqrt{2}) }{3+2 sqrt{2} } =frac{4 (1-2) }{3+2 sqrt{2} } \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~=frac{-4 }{3+2 sqrt{2} } times frac{3-2 sqrt{2}}{3-2 sqrt{2}} \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~= frac{-4(3-2 sqrt{2})}{9-8} \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~= -12+8 sqrt{2}

semoga membantu ya 🙂