Tentukan domain dan range dari
a.1/2x+1
b.akar3-2x
c.akar-x+3
Jika didefinisikan fungsi tersebut merupakan fungsi f(x)
1/2x + 1
Df = {x ∈ R | f(x) ∈ R}
Df = {x ∈ R | 1/2x + 1 ∈ R}
Df = R
Rf = {x ∈ R | x ∈ Df}
Rf = {x ∈ R | x ∈ R}
Rf = R
==========
√3 – 2x
Df = {x ∈ R | f(x) ∈ R}
Df = {x ∈ R | √3 – 2x ∈ R}
Df = {x ∈ R | 3 – 2x ≥ 0}
Df = {x ∈ R | -2x ≥ -3}
Df = {x ∈ R | 2x ≤ 3}
Df = {x ∈ R | x ≤ 3/2}
Df = (-∞, 3/2)
Df = {x | -∞ < x < 3/2, x∈R}
Rf = {x ∈ R | x ∈ Df}
Rf = {x ∈ R | √3 – 2x ∈ (-∞, 3/2)}
Rf = {x ∈ R | x ∈ (0, ∞)}
Rf = (0, ∞)
==========
√-x + 3
Df = {x ∈ R | f(x) ∈ R}
Df = {x ∈ R | √-x + 3 ∈ R}
Df = {x ∈ R | -x + 3 ≥ 0}
Df = {x ∈ R | -x ≥ -3}
Df = {x ∈ R | x ≤ 3}
Df = (-∞, 3)
Df = {x | -∞ < x < 3, x∈R}
Rf = {x ∈ R | x ∈ Df}
Rf = {x ∈ R | √-x + 3 ∈ (-∞, 3)}
Rf = {x ∈ R | x∈(0, ∞)
Rf = (0, ∞)