Tentukan himpunan penyelesaian dari 2 cos x + 2 sin x = 2 , untuk 0 ≤ x ≤ 360 !
Jawab:
2 cos x + 2 sin x = 2
cos x + sin x = 1
a cos x + b sin x = m . cos (x – θ)
cos x + sin x = m cos (x – θ)
a = 1 ; b = 1
m = √(a² + b²)
m = √(1² + 1²)
m = √2
tan θ = b/a = 1/1
θ = 45°
cos x + sin x = 1
cos (x – 45°) = 1
cos (x-45°) = cos 0°
x – 45° = ± 0° + k.360°
x = 45° ± 0° + k.360°
x = 45° + k.360°
atau
x = 315° + k.360°
k bilangan bulat
k = 0°, 45°+0.360°= 45 °
315°+0.360°= 315°