Tentukan persamaan garis singgung kurva fungsi f(x)=√3 sin x+ 1/2, di titik berbasis π/3 !
Jawab:
garis singgung dan fungsi trigonometri
Penjelasan dengan langkah-langkah:
y = √3 sin (x) + 1/2
i) titik singgung (x1,y1)
x1 = π/3
y1= √3 sin (π/3) + 1/2
y1 = √3 (1/2 √3) + 1/2
y1= 3/2 +1/2
y1 = 4/2
y1= 2
*tik sing ( x1,y1) = (π/3, 2)
.
ii) gradien garis singgung = m= y'
m = y' = √3 cos (x)
untuk x1= π/3
m = √3 cos (π/3)
m = √3 (1/2)
m = 1/2 √3
ii) garis singgung di titk (x1, y1) = (π/3, 2) dan m = 1/2 √3
y = m ( x- x1) + y1
y = 1/2 √3 ( x – π/3) + 2
y = 1/2 x √3 – π/6 √3 + 2
absis = x1 = π/3 = 60°
berarti
f(x) = y1= √3.sin 60° + 1/2 = √3.√3/2 + 1/2 = 4/2 = 2
f'(x) = √3 cos x
m = f'(π/3) = √3.cos 60° = √3.1/2 = √3/2
persamaan garis singgung
y – y1 =m (x-x1)
y – 2 = √3/2 (x-π/3)
y – 2 = √3/2x – √3π/6
y = √3/2x – √3π/6 + 2