Tentukan persamaan garis yang melalui titik (–18 , 7) dan tegak lurus terhadap garis berikut!

Posted on

4y = 12x – 16
6x + 5y = 18
9x – 4y – 12 = 0
7y – 6x + 15 = 0

Tentukan persamaan garis yang melalui titik (–18 , 7) dan tegak lurus terhadap garis berikut!

Jawab:

Penjelasan dengan langkah-langkah:

1.

garis 1.

4y = 12x – 16

m₁ = 12/4 = 3

syarat 2 garis tegak lurus ;

m₁ x m₂ = -1

3 x m₂ = -1

m₂ = -1/3

garis 2 melalui titik ( -18 , 7 )

garis 2 ;

y – y₁ = m ( x – x₁ )

y – 7 = -1/3 ( x + 18 )

3y – 21 = -1 ( x – 18 ) ——-> dikalikan 3

3y – 21 = -x + 18

3y = -x + 18 + 21

3y = -x + 39

2.

garis 1 ;

6x + 5y = 18

m₁ = -6/5

syarat 2 garis tegak lurus.

m₁ x m₂ = -1

-6/5 x m₂ = -1

m₂ = 5/6

garis 2 melalui titik ( -18 , 7 ) ;

y – 7 = 5/6 ( x + 18 )

6y – 42 = 5 ( x + 18 ) ———> dikalikan 6

6y – 42 = 5x + 90

6y – 5x = 90 + 42

6y – 5x = 132

5x – 6y = -132

3.

garis 1.

9x – 4y – 12 = 0

m₁ = -9/-4

m₁ = 9/4

syarat 2 garis tegak lurus ;

m₁ x m₂ = -1

9/4 x m₂ = -1

m₂ = -4/9

garis 2 melalui titik ( -18 , 7 )

y – 7 = -4/9 ( x + 18 )

9y – 63 = -4 ( x + 18 ) ———> dikalikan 9

9y – 63 = -4x – 72

4x + 9y – 63 + 72

4x + 9y + 9 = 0

4.

garis 1 .

7y – 6x + 15 = 0

m₁ = -(-6)/7

m₁ = 6/7

syarat 2 garis tegak lurus ;

m₁ x m₂ = -1

6/7 x m₂ = -1

m₂ = -7/6

garis 2 melalui titik ( -18 , 7 )

y – 7 = -7/6 ( x + 18 )

6y – 42 = -7 ( x + 18 ) ——–> dikalikan 6

6y – 42 = -7x – 126

6y + 7x – 42 + 126 = 0

6y + 7x + 84 = 0

semoga bisa membantu