1. F (x) = 2 cos³ (2x²+4x)
2. F (x) =
3. F (x) = ³
4. F (x) = cos x² sin² x
5. F (x) = ⁴
Turunan trigonometri
Turunan
4) f(x) = cos x². sin² x
u= cos x² –> u' = – 2x sin x²
v = sin² x –> v' = 2 sin x cos x
f'(x)= u'v + uv'
f'(x) = (-2 x sin x²)(sin² x) + (cos x²)(2 sin x cos x)
f'(x) = - 2 x sin² x sin x² + 2 sin x cos x cos x²
*
5) f(x) =[ (x² + 1) /(cos x)]⁴
u = (x² + 1) /(cos x) –> u' = (2x cos x – (-sin x)(x²+1))/(cos² x)
du/dx = (2x cos x + (x²+ 1) sin x ) / (cos² x)
y= u⁴ –> dy/du = 4u³
*
y' = dy/dx
dy/dx= dy/du. du/dx
y' = 4 u³ . (2x cos x + (x²+ 1) sin x ) / (cos² x)
y' = 4 {(x² + 1 )/(cos x)}³ (2x cos x + (x²+ 1) sin x ) / (cos² x)
y' = 4(x²+1)³ (2x cos x + (x²+ 1) sin x ) / ( cos³ x cos² x)
y' = 4(x²+1)³ (2x cos x + (x²+ 1) sin x ) / ( cos⁵ x)