Ubahlah titik E ( – 3 , – 3 ) menjadi koordinat kutub
koordinat kartesius → koordinat kutub
(x,y) → (r,a)
r = √(x² + y²)
a = arc tan (y/x)
__
E(-3,-3) → kuadran III (-x,-y)
r = √((-3)² + (-3)²)
r = √(2 × 9)
r = 3√2
a = arc tan (-3/-3)
a = arc tan (1)
a = 180° + 45°
a = 225°
E(–3 , –3) → E(3√2 , 225°)