∫ (4x-6) √2x-3 dx metode substitusi ∫ 2x sin (2x-1)dx metode parsial

Posted on

∫ (4x-6) √2x-3 dx metode substitusi
∫ 2x sin (2x-1)dx metode parsial

Cobadeh! ∫ (x + 3) cos (2x − π)dx =…..
  |____|  |__________|
      u               dv
Langkah pertama, tentukan dulu mana u mana dv
Misalkan (x + 3) adalah u, dan sisanya, cos (2x − π)dx sebagai dv,
u = (x + 3)                 …(Persamaan 1)
dv = cos (2x − π)dx     …(Persamaan 2)

Langkah pertama selesai, kita tengok lagi rumus dasar integral parsial:

∫ u dv = uv − ∫v du

Terlihat di situ kita perlu u, perlu v dan perlu du. u nya sudah ada, tinggal mencari du dan v nya.

Dari persamaan 1, untuk menentukan du, caranya turunkan u nya,
u = (x + 3)
du/dx = 1
du = dx

Dari persamaan 2, untuk menentukan v,
dv = cos (2x − π)dx
atau
dv/dx = cos (2x − π)

dv/dx artinya turunan dari v adalah cos (2x − π), untuk mendapatkan v,
berarti kita harus integralkan cos (2x − π) jika lupa, tengok lagi cara
integral fungsi trigonometri,

v = ∫ cos (2x − π) dx = 1/2 sin (2x − π) + C

Kita rangkum lagi :
u = (x + 3)
v = 1/2 sin (2x − π)
du = dx

Saatnya kembali ke rumus dasar, masukkan nilai-nilai yang sudah dicari tadi:
16 ∫ (x + 3) cos (2x − π)dx
Simpan dulu 16 nya, terakhir nanti hasilnya baru di kali 16
= uv − ∫v du
= (x + 3) 1/2 sin (2x − π) − ∫ 1/2 sin (2x − π) du
= 1/2 (x + 3) sin (2x − π) − ∫ 1/2 sin (2x − π) dx
= 1/2 (x + 3) sin (2x − π) − 1/2 {− 1/2 cos (2x − π) }
= 1/2 (x + 3) sin (2x − π) + 1/4 cos (2x − π)

kalikan 16, tambahkan + C nya

= 16 { 1/2 (x + 3) sin (2x − π) + 1/4 cos (2x − π) } + C
= 8 (x + 3) sin (2x − π) + 4 cos (2x − π)  + C

Gambar Jawaban